Home

Specificity of Bionoise

Glossary Bio
Acronyms Bio
Beware
Contact
 
 

STOCHASTIC RESONANCE IN NEURAL NETWORKS

“Hopefully, we can get some noise on our side this time.”

(Jerome Bettis)

 

  1. Xiaojuan Sun, Zhaofan Liu: Combined effects of time delay and noise on the ability of neuronal network to detect the subthreshold signal. Nonlinear Dynamics, Vol. 92, no. 4, 2018, pp. 1707 – 1717. DOI 10.1007/s11071-018-4156-7

  2. Hui Dan Li, Xiao Li Yang, Zhong Kui Sun: The ordered firing patterns of a neuronal network subject to magnetic flow effect. Nonlinear Dynamics, Vol. 93, no. 3, 2018, pp. 1301 – 1314. DOI 10.1007/s11071-018-4260-8

  3. Sun Xiaojuan, Li Guofang: Effects of partial time delay on detecting subthreshold signal in Newman–Watts neuronal networks. Physica A: Statistical Mechanics and its Applications, 2018. Available on line. DOI 10.1016/j.physa.2018.08.066

  4. Guillermo Rodrigo, Nigel G.Stocks: Suprathreshold Stochastic Resonance behind Cancer. Trends in Biochemical Science, Vol. 43, no. 7, 2018, pp. 483 – 485. DOI 10.1016/j.tibs.2018.04.001

  5. Yuangen Yao, Lijian Yang, Canjun Wang, et al: Subthreshold Periodic Signal Detection by Bounded Noise-Induced Resonance in the FitzHugh–Nagumo Neuron. Complexity, Vol. 2018, 2018, Article # 5632650, 10 pages. DOI 10.1155/2018/5632650

  6. van der Groen O., Tang M.F., Wenderoth N., Mattingley J.B.: Stochastic resonance enhances the rate of evidence accumulation during combined brain stimulation and perceptual decision-making. PLoS Computational Biology, Vol. 14, no. 7, 2018, Article # e1006301. DOI 10.1371/journal.pcbi.1006301

  7. Lei Wang: Resonance Properties of Class I and Class II Neurons Differentially Modulated by Channel Noise. Journal of Physics: Conference Series, Vol. 960, conf. 1, 2018, Article # 012011. DOI 10.1088/17426596/960/1/012011

  8. Zhou Bingchang, Qi Qianqian: Stochastic resonance in an array of integrate-and-fire neurons with threshold. Modern Physics Lett. B, Vol. 32, no. 16, 2018, Article # 1850169. DOI 10.1142/S0217984918501695

  9. Masoliver Maria, Masoller Cristina: Sub-threshold signal encoding in coupled FitzHugh-Nagumo neurons. Scientific Reports, Vol. 8, 2018, Article # 8276. DOI 10.1038/s41598-018-26618-8

  10. Li Dongxi, Cui Xiaowei, Yang Yachao: Inverse stochastic resonance induced by non-Gaussian colored noise. Neurocomputing, Vol. 287, Issue C, 2018, pp. 52 – 57. DOI 10.1016/j.neucom.2018.01.078

  11. Zhang Xiao-Han, Liu Shen-Quan: Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction. Chinese Physics B, Vol. 27, no. 4, 2018, Article # 040501. DOI 10.1088/1674-1056/27/4/040501

  12. Liu Yujiang, Yue Yuan, Yu Yuguo, et al.: Effects of channel blocking on information transmission and energy efficiency in squid giant axons. Journal of Computational Neuroscience, Vol. 44, no. 2, 2018, pp. 219 – 231. DOI 10.1007/s10827-017-0676-2

  13. Huiyan Li, Xiaojuan Sun, Jinghua Xiao: Stochastic multiresonance in coupled excitable FHN neurons. Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 28, no. 4, 2018, Article Number 043113. DOI 10.1063/1.4997679

  14. Zhao Zhiguo, Li Li, Gu Huaguang: Dynamical Mechanism of Hyperpolarization-Activated Non-specific Cation Current Induced Resonance and Spike-Timing Precision in a Neuronal Model. Frontiers in Cellular Neuroscience, Vol. 12, 2018, Article # 62. DOI 10.3389/fnce1.2018.00062

  15. Xie Huijuan, Gong Yubing, Wang Baoying: Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks. Chaos Solitons & Fractals, Vol. 108, 2018, pp. 1 – 7. DOI 10.1016/j.chaos.2018.01.020

  16. Ikemoto Shuhei, DallaLibera Fabio, Hosoda Koh: Noise-modulated neural networks as an application of stochastic resonance. Neurocomputing, Vol. 277, 2018, Special Issue: SI, pp. 29 – 37. DOI 10.1016/j.neucom.2016.12.111

  17. Yu-Xuan Fu, Yanmei Kang, Yong Xie: Subcritical Hopf Bifurcation and Stochastic Resonance of Electrical Activities in Neuron under Electromagnetic Induction. Frontiers in Computational Neuroscience, Vol. 12, no. 6, 2018. DOI 10.3389/fncom.2018.00006

  18. Li Sheng-Hong, Zhu Quan-Xin: Stochastic impact in Fitzhugh–Nagumo neural system with time delays driven by colored noises. Chinese Journal of Physics, Vol. 56, no. 1, 2018, pp. 346 – 354. DOI 10.1016/j.cjph.2017.11.014

  19. Yuangen Yao, Jun Ma: Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh–Nagumo neuron. Cognitive Neurodynamics, Vol. 12, no. 3, 2018, pp. 343 – 349. DOI 10.1007/s11571-018-9475-3

  20. Yu Haitao, Zhang Lianghao, Guo Xinmeng, et al.: Effect of inhibitory firing pattern on coherence resonance in random neural networks. Physica A: Statistical Mechanics and its Applications, Vol. 490, 2018, pp. 1201 – 1210. DOI 10.1016/j.physa.2017.08.040

  21. Andreev A.V., Makarov V.V., Runnova A.E., et al.: Coherence resonance in stimulated neuronal network. Chaos Solitons & Fractals, Vol. 106, 2018, pp. 80 – 85. DOI 10.1016/j.chaos.2017.11.017

  22. Kim Sang-Yoon, Lim Woochang: Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity. Neural Networks, Vol. 97, 2018, pp. 92 – 106. DOI 10.1016/j.neunet.2017.09.016

  23. Shao Weihang, Barras Jamie, Kosmas Panagiotis: Detection of extremely weak NQR signals using stochastic resonance and neural network theories. Signal Processing, Vol. 142, 2018, pp. 96 – 103. DOI 10.1016/j.sigpro.2017.06.027

  24. Guo Yong-Feng, Xi Bei, Wei Fang, et al.: Stochastic resonance in FitzHugh-Nagumo neurals ystem driven by correlated non-Gaussian noise and Gaussian noise. Int. J. of Modern Physics B, Vol. 31, no. 32, 2017, Article # 1750264. DOI 10.1142/S0217979217502642

  25. Li Guo-Fang, Sun Xiao-Juan: Effects of hybrid synapses and partial time delay on stochastic resonance in a small-world neuronal network. Acta Physica Sinica, Vol. 66, no. 24, 2017, Article # 240501. DOI 10.7498/aps.66.240501

  26. Yonekura Shogo, Kuniyoshi Yasuo: Bodily motion fluctuation improves reaching success rate in a neurophysical agent via geometric-stochastic resonance. PLoS One, Vol. 12, no. 12, 2017, Article # e0188298. DOI 10.1371/journal.pone.0188298

  27. Orcioni S., Paffi A., Camera F., et al.: Automatic decoding of input sinusoidal signal in a neuron model: Improved SNR spectrum by low-pass homomorphic filtering. Neurocomputing, Vol. 267, Issue C, 2017, pp. 605 – 614. DOI 10.1016/j.neucom.2017.06.029

  28. Yao Yuangen, Yi Ming, Hou Dejia: Coherence resonance induced by cross-correlated sine-Wiener noises in the FitzHugh-Nagumo neurons. Int. J. of Modern Physics B, Vol. 31, no. 28, 2017, Article # 1750204. DOI 10.1142/S0217979217502046

  29. Yu Wen-Ting, Zhang Juan, Tang Jun: Effects of dynamic synapses, neuronal coupling, and time delay on firing of neuron. Acta Physica Sinica, Vol. 66, no. 20, 2017, Article # 200201. DOI 10.7498/aps.66.200201

  30. Gong Yubing, Xie Huijuan: Channel noise-induced temporal coherence transitions and synchronization transitions in adaptive neuronal networks with time delay. European Physical Journal B, Vol. 90, no. 9, 2017, Article # 175. DOI 10.1140/epjb/e2017-80361-7

  31. Ryashko Lev, Slepukhina Evdokia: Noise-induced torus bursting in the stochastic Hindmarsh-Rose neuron model. Physical Review E, Vol. 96, no. 3, 2017, Article # 032212. DOI 10.1103/PhysRevE.96.032212

  32. Naud Richard, Payeur Alexandre, Longtin Andre: Noise Gated by Dendrosomatic Interactions Increases Information Transmission. Physical Review X, Vol. 7, no. 3, 2017, Article # 031045. DOI 10.1103/PhysRevX.7.031045

  33. Toledo Diana R., Barela Jose A., Kohn Andre F.: Improved Proprioceptive Function by Application of Subsensory Electrical Noise: Effects of Aging and Task-Demand. Neuroscience, Vol. 358, 2017, pp. 103 – 114. DOI 10.1016/j.neuroscience.2017.06.045

  34. Huidobro Nayeli, Mendez-Fernandez Abraham, Mendez-Balbuena Ignacio, et al.: Brownian Optogenetic-Noise-Photostimulation on the Brain Amplifies Somatosensory-Evoked Field Potentials. Frontiers in Neuroscience, Vol. 11, 2017, Article # 464. DOI 10.3389/fnins.2017.00464

  35. Guo Daqing, Perc Matjaz, Zhang Yangsong, et al.: Frequency-difference-dependent stochastic resonance in neural systems. Physical Review E, Vol. 96, no. 2, 2017, Article # 022415. DOI 10.1103/PhysRevE.96.022415

  36. Yang Xiao Li, Yu Yan Hu, Sun ZhongKui: Autapse-induced multiple stochastic resonances in a modular neuronal network. Chaos, Vol. 27, no. 8, 2017, Article # 083117. DOI 10.1063/1.4999100

  37. Xie Jun, Xu Guanghua, Luo Ailing, et al.: The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface. Sensors, Vol. 17, no. 8, 2017, Article # 1873. DOI 10.3390/s17081873

  38. Malone B.J., Heiser M.A., Beitel R.E., et al.: Background noise exerts diverse effects on the cortical encoding of foreground sounds. Journal of Neurophysiology, Vol. 118, no. 2, 2017, pp. 1034 – 1054. DOI 10.1152/jn.00152.2017

  39. Wang Ya, Wang Chunni, Ren Guodong, et al.: Energy dependence on modes of electric activities of neuron driven by multi-channel signals. Nonlinear Dynamics, Vol. 89, no. 3, 2017, pp. 1967 – 1987. DOI 10.1007/s11071-017-3564-4

  40. Cheng Chaojun, Zhou Bingchang, Gao Xiao, et al.: M-ary suprathreshold stochastic resonance in multilevel threshold systems with signal-dependent noise. Physica A: Statistical Mechanics and its Applications, Vol. 479, 2017, pp. 48 – 56. DOI 10.1016/j.physa.2017.03.010

  41. Uzuntarla Muhammet, Barreto Ernest, Torres Joaquin J.: Inverse stochastic resonance in networks of spiking neurons. PLoS Computational Biology, Vol. 13, no. 7, 2017, Article # e1005646. DOI 10.1371/journal.pcbi.1005646

  42. Wang Nan, Song Aiguo, Yang Biao: The effect of time-delayed feedback on logical stochastic resonance. European Physical Journal B, Vol. 90, no. 6, 2017, Article # 117. DOI 10.1140/epjb/e2017-80150-4

  43. Ly Cheng, Doiron Brent: Noise-enhanced coding in phasic neuron spike trains. PLoS One, Vol. 12, no. 5, Article # e0176963., 2017 DOI 10.1371/journal.pone.0176963

  44. Nobukawa Sou, Nishimura Haruhiko, Yamanishi Teruya: Chaotic Resonance in Typical Routes to Chaos in the Izhikevich Neuron Model. Scientific Reports, Vol. 7, 2017, Article # 1331. DOI 10.1038/s41598-017-01511-y

  45. Bhattacharjee Anindita, Das M.K.: Emergent dynamics of spiking neurons with fluctuating threshold. Communications in Nonlinear Science & Numerical Simulation, Vol. 46, 2017, pp. 126 – 134. DOI 10.1016/j.cnsns.2016.10.022

  46. Yu Haitao, Galan Roberto F., Wang Jiang, et al.: Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin-Huxley neurons with ion-channel noise. Physica A: Statistical Mechanics and its Applications, Vol. 471, 2017, pp. 263 – 275. DOI 10.1016/j.physa.2016.12.039

  47. Wu Fuqiang, Wang Chunni, Jin Wuyin, et al.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A: Statistical Mechanics and its Applications, Vol. 469, 2017, pp. 81 – 88. DOI 10.1016/j.physa.2016.11.056

  48. Wu Juan, Xu Yong, Ma Jun: Levy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS One, Vol. 12, no. 3, 2017, Article # e0174330. DOI 10.1371/journal.pone.0174330

  49. Grewe J., Kruscha A., Lindner B., et al.: Synchronous spikes are necessary but not sufficient for a synchrony code in populations of spiking neurons. PNAS, Vol. 114, no. 10, 2017, pp. E1977 – E1985. DOI 10.1073/pnas.1615561114

  50. Xu Ying, Ying Heping, Jia Ya, et al.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Scientific Reports, Vol. 7, 2017, Article # 43452. DOI 10.1038/srep43452

  51. Yao Yuangen, Deng Haiyou, Yi Ming, et al.: Impact of bounded noise on the formation and instability of spiral wave in a 2D Lattice of neurons. Scientific Reports, Vol. 7, 2017, Article # 43151. DOI 10.1038/srep43151

  52. Wang Ya, Ma Jun, Xu Ying, et al.: The Electrical Activity of Neurons Subject to Electromagnetic Induction and Gaussian White Noise. Int. J. of Bifurcation & Chaos, Vol. 27, no. 2, 2017, Article # 1750030. DOI 10.1142/S0218127417500304

  53. Zhao Jia, Deng Bin, Qin Yingmei, et al.: Weak electric fields detectability in a noisy neural network. Cognitive Neurodynamics, Vol. 11, no. 1, 2017, pp. 81 – 90. DOI 10.1007/s11571-016-9409-x

  54. Uzuntarla Muhammet, Torres Joaquin J., So Paul, et al.: Double inverse stochastic resonance with dynamic synapses. Physical Review E, Vol. 95, no. 1, 2017, Article # 012404. DOI 10.1103/PhysRevE.95.012404

  55. Uzun Rukiye, Ozer Mahmut: Effects of Autapse and Channel Blockage on Firing Regularity in a Biological Neuronal Network. Istanbul University-Journal of Electrical and Electronics Engineering, Vol. 17, no. 1, Special Issue: SI, 2017, pp. 3068 – 3072. DOI 10.1109/TIPTEKNO.2016.7863099

  56. Lobov S.A., Zhuravlev M.O., Makarov V.A., et al.: Noise Enhanced Signaling in STDP Driven Spiking-Neuron Network. Mathematical Modelling of Natural Phenomena, Vol. 12, no. 4, 2017, pp. 109 – 124. DOI 10.1051/mmnp/201712409

  57. Singh Munendra, Verma Ashish, Sharma Neeraj: Bat optimization based neuron model of stochastic resonance for the enhancement of MR images. Biocybernetics and Biomedical Engineering, Vol. 37, no. 1, 2017, pp. 124 – 134. DOI 10.1016/j.bbe.2016.10.006

  58. Duan Wei-Long, Zeng Chunhua: Signal power amplification of intracellular calcium dynamics with non-Gaussian noises and time delay. Applied Mathematics and Computation, Vol. 292, 2017, pp. 400 – 405. DOI 10.1016/j.amc.2016.08.001

  59. Yu Haitao, Guo Xinmeng, Wang Jiang: Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay. Communications in Nonlinear Science & Numerical Simulation, Vol. 42, 2017, pp. 532 – 544. DOI 10.1016/j.cnsns.2016.06.021

  60. Zakharova A., Semenova N., Anishchenko V., Schöll E.: Noise Induced Chimera States in a Neural Network. Patterns of Dynamics, Berlin, Springer Proc. in Mathematics & Statistics, 2016, pp. 44 – 62. ISBN 978-3-319-64172-0 ; DOI 10.1007/978-3-319-64173-7

  61. Nobukawa Sou, Nishimura Haruhiko: Enhancement of Spike-Timing-Dependent Plasticity in Spiking Neural Systems with Noise. Int. Journal of Neural Systems, Vol. 26, no. 5, 2016, Article # 1550040. DOI 10.1142/S0129065715500409

  62. Wang Qi, Gong Yubing: Effect of Autaptic Activity on Intrinsic Coherence Resonance in Newman-Watts Networks of Stochastic Hodgkin-Huxley Neurons. Fluct. & Noise Lett., Vol. 15, no. 2, 2016, Article # 1650016. DOI 10.1142/S0219477516500164

  63. Wang Qi, Gong Yubing: Multiple coherence resonance and synchronization transitions induced by autaptic delay in Newman-Watts neuron networks. Applied Mathematical Modelling, Vol. 40, no. 15-16, 2016, pp. 71477155. https://doi.org/10.1016/j.apm.2016.03.003

  64. Onorato I., D'Alessandro G., Di Castro M.A., et al.: Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance. PLoS One, Vol. 11, no. 8, 2016, Article # e0160950. DOI 10.1371/journal.pone.0160950

  65. Wang Hengtong, Chen Yong: Response of autaptic Hodgkin-Huxley neuron with noise to subthreshold sinusoidal signals. Physica A - Statistical Mechanics and its Applications, Vol. 462, 2016, pp. 321329. DOI 10.1016/j.physa.2016.06.019

  66. Kang Qi, Huang BingYao, Zhou MengChu: Dynamic Behavior of Artificial Hodgkin-Huxley Neuron Model Subject to Additive Noise. IEEE Trans on Cybernetics, Vol. 46, no. 9, 2016, pp. 20832093. DOI 10.1109/TCYB.2015.2464106

  67. Zhe Sun, Micheletto R.: Noise influence on spike activation in a Hindmarsh-Rose small-world neural network. Journal of Physics A - Mathematical and Theoretical, Vol. 49, no. 28, 2016, Article # 285601. DOI 10.1088/1751-8113/49/28/285601

  68. Chalk M., Gutkin B., Deneve S.: Neural oscillations as a signature of efficient coding in the presence of synaptic delays. ELIFE, Vol. 5, 2016, Article # e13824. DOI 10.7554/eLife.11324

  69. Xie Huijuan, Gong Yubing, Wang Qi: Effect of spike-timing-dependent plasticity on coherence resonance and synchronization transitions by time delay in adaptive neuronal networks. European Physical Journal B, Vol. 89, no. 7, 2016, pp. 17, Article # 161. DOI 10.1140/epjb/e2016-70282-4

  70. Sun Xiao-Juan, Li Guo-Fang: Stochastic multi-resonance induced by partial time delay in a Watts-Strogatz small-world neuronal network. Acta Physica Sinica, Vol. 65, no. 12, 2016, Article # 120502. DOI 10.7498/aps.65.120502

  71. Fabing Duan, Chapeau-Blondeau F., Derek A.: Encoding efficiency of suprathreshold stochastic resonance on stimulus-specific information. Physics Lett. A, Vol. 380, no. 1-2, 2016, pp. 33 – 39. DOI 10.1016/j.physleta.2015.09.043

  72. Liyan Xu, Fabing Duan, Derek A., McDonnell M.D.: Optimal weighted suprathreshold stochastic resonance with multigroup saturating sensors. Physica A: Statistical Mechanics and its Applications, Vol. 457, 2016, pp. 348 – 355. DOI 10.1016/j.physa.2016.03.064

  73. Qiqing Zhai, Youguo Wang: Optimal and Suboptimal Noises Enhancing Mutual Information in Threshold System. Fluct. Noise Lett., Vol. 15, no. 02, 2016, Article # 1650015. DOI 10.1142/S0219477516500152

  74. Audhkhasi Kartik, Osoba Osonde, Kosko B.: Noise-enhanced convolutional neural networks. Neural Networks, Vol. 78, Special no. SI, 2016, pp. 1523. DOI 10.1016/j.neunet.2015.09.014

  75. Sanchez A.D., Izus G.G.: Noise-sustained synchronization of electrically coupled FitzHugh-Nagumo networks under counterphase external forcing. Physics Lett. A, Vol. 380, no. 2223, 2016, pp. 1964-1970. DOI 10.1016/j.physleta.2016.04.017

  76. Yu Lianchun, Zhang Chi, Liu Liwei, et al.: Energy-efficient population coding constrains network size of a neuronal array system. Scientific Reports, Vol. 6, 2016, Article # 19369. DOI 10.1038/srep19369

  77. Guo Daqing, Wu Shengdun, Chen Mingming, et al.: Regulation of Irregular Neuronal Firing by Autaptic Transmission. Scientific Reports, Vol. 6, 2016, Article # 26096. DOI 10.1038/srep26096

  78. Yonekura Shogo, Kuniyoshi Yasuo, Kawaguchi Yoichiro: Growth of stochastic resonance in neuronal ensembles with the input signal intensity. Physical Review E, Vol. 93, no. 3, 2016, Article # 039903. DOI 10.1103/PhysRevE.93.039903

  79. Djeundam S.R. Dtchetgnia, Yamapi R., Filatrella G., et al.: Dynamics of Disordered Network of Coupled Hindmarsh-Rose Neuronal Models. Int. J. of Bifurcation & Chaos, Vol. 26, no. 3, 2016, Article # 1650048. DOI 10.1142/S0218127416500486

  80. Yilmaz Ergin, Baysal Veli, Perc Matjaz, et al.: Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network. Science China - Technological Sciences, Vol. 59, no. 3, 2016, pp. 364370. DOI 10.1007/s11431-015-5984-z

  81. Yilmaz Ergin, Baysal Veli, Ozer Mahmut, et al.: Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks. Physica A - Statistical Mechanics and its Applications, Vol. 444, 2016, pp. 538546. DOI 10.1016/j.physa.2015.10.054

  82. Wang ZhanQing, Xu Yong, Yang Hui: Levy noise induced stochastic resonance in an FHN model. Science China - Technological Sciences, Vol. 59, no. 3, 2016, pp. 371375. DOI 10.1007/s11431-015-6001-2

  83. Chen YueLing, Yu LianChun, Chen Yong: Reliability of weak signals detection in neurons with noise. Science China - Technological Sciences, Vol. 59, no. 3, 2016, pp. 411417. DOI 10.1007/s11431-015-6000-3

  84. Li Dongxi, Hu Bing, Wang Jia, et al.: Coherence resonance in the two-dimensional neural map driven by non-Gaussian colored noise. Int. J. of Modern Physics B, Vol. 30, no. 5, 2016, Article # 1650012. DOI 10.1142/S0217979216500120

  85. Wang Jiang, Han Ruixue, Wei Xilei, et al.: Weak signal detection and propagation in diluted feed-forward neural network with recurrent excitation and inhibition. Int. J. of Modern Physics B, Vol. 30, no. 2, 2016, Article # 1550253. DOI 10.1142/S0217979215502537

  86. Yu Lianchun, Zhang Chi, Liu Liwei, Yu Yuguo: Energy-efficient population coding constrains network size of a neuronal array system. Scientific Reports, Vol. 6, 2016, Article # 19369. DOI 10.1038/srep19369

  87. Li X.L., Ning L.J.: Effect of correlation in FitzHugh-Nagumo model with non-Gaussian noise and multiplicative signal. Indian J. of Physics, Vol. 90, no. 1, 2016, pp. 9198. DOI 10.1007/s12648-015-0717-5

  88. Antal A., Herrmann C.S.: Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms. Neural Plasticity, 2016, Article # 3616807. DOI 10.1155/2016/3616807

  89. Paulus W., Nitsche M.A., Antal A.: Application of Transcranial Electric Stimulation (tDCS, tACS, tRNS) From Motor-Evoked Potentials Towards Modulation of Behaviour. European Psychologist, Vol. 21, no. 1, Special no. SI, 2016, pp. 414. DOI 10.1027/1016-9040/a000242

  90. Kaut O., Brenig D., Marek M., et al.: Postural Stability in Parkinson's Disease Patients Is Improved after Stochastic Resonance Therapy. Parkinsons Disease, 2016, Article # 7948721. DOI 10.1155/2016/7948721

  91. Haitao Yu, Xinmeng Guo, Jiang Wang, Chen Liu, Bin Deng, Xile Wei: Adaptive stochastic resonance in self-organized small-world neuronal networks with time delay. Communications in Nonlinear Science & Numerical Simulation, Vol. 29, no. 1-3, 2015, pp. 346358. DOI 10.1016/j.cnsns.2015.05.017

  92. Voronenko S.O, Stannat W., Lindner B.: Shifting Spike Times or Adding and Deleting Spikes - How Different Types of Noise Shape Signal Transmission in Neural Populations. Journal of Mathematical Neuroscience, Vol. 5, no. 1, 2015, pp. 1. DOI 10.1186/2190-8567-5-1

  93. Kim Sang-Yoon, Lim Woochang: Frequency-domain order parameters for the burst and spike synchronization transitions of bursting neurons. Cognitive Neurodynamics, Vol. 9, no. 4, 2015, pp. 411421. DOI 10.1007/s11571-015-9334-4

  94. Yu Haitao, Guo Xinmeng, Wang Jiang, et al.: Adaptive stochastic resonance in self-organized small-world neuronal networks with time delay. Communications in Nonlinear Science & Numerical Simulation, Vol. 29, no. 1-3, 2015, pp. 346358. DOI 10.1016/j.cnsns.2015.05.017

  95. Zhang Gang, Hu Tao, Zhang Tian-Qi: Characteristic analysis of power function type monostable stochastic resonance with Levy noise. Acta Physica Sinica, Vol. 64, no. 22, 2015, Article # 220502. DOI 10.7498/aps.64.220502

  96. Mendez-Balbuena I., Huidobro N., Silva M., et al.: Effect of mechanical tactile noise on amplitude of visual evoked potentials: multisensory stochastic resonance. Journal of Neurophysiology, Vol. 114, no. 4, 2015, pp. 21322143. DOI 10.1152/jn.00457.2015

  97. Nobukawa Sou, Nishimura Haruhiko, Yamanishi Teruya, et al.: Analysis of Chaotic Resonance in Izhikevich Neuron Model. PLoS One, Vol. 10, no. 9, 2015, Article # e0138919. DOI 10.1371/journal.pone.0138919

  98. Zhang Xuejuan, Li Hui, Chen Jianchun, et al.: The impact of channel and external synaptic noises on spatial and temporal coherence in neuronal networks. Neurocomputing, Vol. 164, 2015, pp. 230239. DOI 10.1016/j.neucom.2015.02.066

  99. Buonocore A., Caputo L., Nobile A.G., et al.: Restricted Ornstein-Uhlenbeck process and applications in neuronal models with periodic input signals. Journal of Computational & Applied Mathematics, Vol. 285, 2015, pp. 5971. DOI 10.1016/j.cam.2015.01.042

  100. da Silva, L.A., Vilela, R.D.: Colored noise and memory effects on formal spiking neuron models. Physical Review E, Vol. 91, no. 6, 2015, Article # 062702. DOI 10.1103/PhysRevE.91.062702

  101. Yong Xu, Jing Feng, Wei Xu, et al.: Probability Density Transitions in the FitzHugh-Nagumo Model with Levy Noise. CMES - Computer Modeling in Eng. & Sciences, Vol. 106, no. 5, 2015, pp. 309322. http://www.techscience.com/doi/10.3970/cmes.2015.106.309.pdf

  102. Zhang Huiqing, Yang Tingting, Xu Yong, Xu Wei: Parameter dependence of stochastic resonance in the FitzHugh-Nagumo neuron model driven by trichotomous noise. European Physical Journal B, Vol. 88, no. 5, 2015, Article # 125. DOI 10.1140/epjb/e2015-50865-3

  103. Paffi A., Camera F., Apollonio F., et al.: Restoring the encoding properties of a stochastic neuron model by an exogenous noise. Frontiers in Computational Neuroscience, Vol. 9, 2015, Article # 42. DOI 10.3389/fncom.2015.00042

  104. Wang Nan, Song Aiguo: Parameter-induced logical stochastic resonance. Neurocomputing, Vol. 155, 2015, pp. 8083. DOI 10.1016/j.neucom.2014.12.045

  105. Silva I.G., Rosso O.A., Vermelho M.V.D., Lyra M.L.: Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh-Nagumo neuron model. Communications in Nonlinear Science & Numerical Simulation, Vol. 22, no. 1-3, 2015, pp. 641649. DOI 10.1016/j.cnsns.2014.06.050

  106. Metzen M.G., Avila-Akerberg O., Chacron M.J.: Coding stimulus amplitude by correlated neural activity. Physical Review E, Vol. 91, no. 4, 2015, Article # 042717. DOI 10.1103/PhysRevE.91.042717

  107. Zhou Wen-Liang, Short S.M., Rich M.T., et al.: Branch specific and spike-order specific action potential invasion in basal, oblique, and apical dendrites of cortical pyramidal neurons. Neurophotonics, Vol. 2, no. 2, 2015, Article # 021006. DOI 10.1117/1.NPh.2.2.021006

  108. Torres J.J., Elices I., Marro J.: Efficient Transmission of Subthreshold Signals in Complex Networks of Spiking Neurons. PLoS One, Vol. 10, no. 3, 2015, Article # e0121156. DOI 10.1371/journal.pone.0121156

  109. Li X.L., Ning L.J.: Stochastic resonance in FizHugh-Nagumo model driven by multiplicative signal and non-Gaussian noise. Indian J. of Physics, Vol. 89, no. 2, 2015, pp. 189194. DOI 10.1007/s12648-014-0537-z

  110. Danziger Z., Grill W.M.: A neuron model of stochastic resonance using rectangular pulse trains. Journal of Computational Neuroscience, Vol. 38, no. 1, 2015, pp. 5366. DOI 10.1007/s10827-014-0526-4

  111. Voronenko S.O., Stannat W., Lindner B.: Shifting Spike Times or Adding and Deleting Spikes-How Different Types of Noise Shape Signal Transmission in Neural Populations. Journal of Mathematical Neuroscience, Vol. 5, 2015, Article # 1. DOI 10.1186/2190-8567-5-1

  112. McDonnell M.D., Iannella N., To Minh-Son, et al.: A review of methods for identifying stochastic resonance in simulations of single neuron models. Network - Computation in Neural Syst., Vol. 26, no. 2, 2015, pp. 3571. DOI 10.3109/0954898X.2014.990064

  113. Qi Wang, Yubing Gong, Yanan Wu: Optimization of Intrinsic Stochastic Resonance in Adaptive Newman–Watts Network of Channel Blocked Hodgkin–Huxley Neurons. Fluct. Noise Lett., Vol. 13, no. 04, 2014, Article # 1450026. DOI 10.1142/S0219477514500266

  114. Gjorgjieva J., Mease R.A., Moody W.J., et al.: Intrinsic Neuronal Properties Switch the Mode of Information Transmission in Networks. PLoS Computational Biology, Vol. 10, no. 12, 2014, Article # e1003962. DOI 10.1371/journal.pcbi.1003962

  115. Casson A.J.: Artificial Neural Network classification of operator workload with an assessment of time variation and noise-enhancement to increase performance. Frontiers in Neuroscience, Vol. 8, 2014, Article # 372. DOI 10.3389/fnins.2014.00372

  116. Lopes M.A., Lee K.-E., Goltsev A.V., et al.: Noise-enhanced nonlinear response and the role of modular structure for signal detection in neuronal networks. Physical Review E, Vol. 90, no. 5, 2014, Article # 052709. DOI 10.1103/PhysRevE.90.052709

  117. Deng Bin, Wang Lin, Wang Jiang, et al.: Endogenous fields enhanced stochastic resonance in a randomly coupled neuronal network. Chaos Solitons & Fractals, Vol. 68, 2014, pp. 3039. DOI 10.1016/j.chaos.2014.07.006

  118. Karbasi A., Salavati A.H., Shokrollahi A., et al.: Noise Facilitation in Associative Memories of Exponential Capacity. Neural Computation, Vol. 26, no. 11, 2014, pp. 24932526. DOI 10.1162/NECO_a_00655

  119. Wang Can Jun, Yang Ke Li, Qu Shi Xian: Stochastic resonance in a discrete neuron with time delay and two different modulation signals. Physica Scripta, Vol. 89, no. 10, 2014, Article # 105001. DOI 10.1088/0031-8949/89/10/105001

  120. Wu Yanan, Gong Yubing, Wang Qi: Noise-induced synchronization transitions in neuronal network with delayed electrical or chemical coupling. European Physical Journal B, Vol. 87, no. 9, 2014, Article # 198. DOI 10.1140/epjb/e2014-50437-1

  121. Yu Haitao, Guo Xinmeng, Wang Jiang, et al.: Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks. Chaos, Vol. 24, no. 3, 2014, Article # 033125. DOI 10.1063/1.4893773

  122. Hunsberger E., Scott M., Eliasmith C.: The Competing Benefits of Noise and Heterogeneity in Neural Coding. Neural Computation, Vol. 26, no. 8, 2014, pp. 16001623. DOI 10.1162/NECO_a_00621

  123. Rausch V.H., Bauch E.M., Bunzeck N.: White Noise Improves Learning by Modulating Activity in Dopaminergic Midbrain Regions and Right Superior Temporal Sulcus. Journal of Cognitive Neuroscience, Vol. 26, no. 7, 2014 pp. 14691480. DOI 10.1162/jocn_a_00537

  124. Li Huan, Wang You-Guo: Noise-enhanced information transmission of a non-linear multilevel threshold neural networks system. Acta Physica Sinica, Vol. 63, no. 12, 2014, Article # 120506. DOI 10.7498/aps.63.120506

  125. Lu Qiang, Tian Juan: Synchronization and stochastic resonance of the small-world neural network based on the CPG. Cognitive Neurodynamics, Vol. 8, no. 3, 2014, pp. 217226. DOI 10.1007/s11571-013-9275-8

  126. dell'Erba M.G., Cascallares G., Sanchez A.D., et al.: Noise-sustained synchronization in a FitzHugh-Nagumo ring with electrical phase-repulsive coupling. European Physical Journal B, Vol. 87, no. 4, 2014, Article # 82. DOI 10.1140/epjb/e2014-41029-2

  127. Liu Ying, Xu Xinmin: Stochastic and Coherence Resonance in a Dressed Neuron Model. Int. J. of Bifurcation & Chaos, Vol. 24, no. 4, 2014, Article # 1450052. DOI 10.1142/S0218127414500527

  128. Zheng Yanhong, Wang Qingyun, Danca M.-F.: Noise induced complexity: patterns and collective phenomena in a small-world neuronal network. Cognitive Neurodynamics, Vol. 8, no. 2, 2014, pp. 143149. DOI 10.1007/s11571-013-9257-x

  129. Sirovich R., Sacerdote L., Villa A.E.P.: Cooperative Behavior in a Jump Diffusion Model for a Simple Network of Spiking Neurons. Mathematical Biosciences and Engineering, Vol. 11, no. 2, Special no. SI, 2014, pp. 385401. DOI 10.3934/mbe.2014.11.385

  130. Liu Chen, Wang Jiang, Yu Haitao, et al.: The effects of time delay on the stochastic resonance in feed-forward-loop neuronal network motifs. Communications in Nonlinear Science & Numerical Simulation, Vol. 19, no. 4, 2014, pp. 10881096. DOI 10.1016/j.cnsns.2013.08.021

  131. Yu Lianchun, Liu Liwei: Optimal size of stochastic Hodgkin-Huxley neuronal systems for maximal energy efficiency in coding pulse signals. Physical Review E, Vol. 89, no. 3, 2014, Article # 032725. DOI 10.1103/PhysRevE.89.032725

  132. Duan Fabing, Chapeau-Blondeau F., Abbott D.: Stochastic Resonance with Colored Noise for Neural Signal Detection. PLoS One, Vol. 9, no. 3, 2014, Article # e91345. DOI 10.1371/journal.pone.0091345

  133. Iliopoulos F., Nierhaus T., Villringer A.: Electrical noise modulates perception of electrical pulses in humans: sensation enhancement via stochastic resonance. Journal of Neurophysiology, Vol. 111, no. 6, 2014, pp. 12381248. DOI 10.1152/jn.00392.2013

  134. Wang Jiang, Guo Xinmeng, Yu Haitao, et al.: Stochastic resonance in small-world neuronal networks with hybrid electrical-chemical synapses. Chaos Solitons & Fractals, Vol. 60, 2014, pp. 4048. DOI 10.1016/j.chaos.2014.01.005

  135. Karbasi A., Salavati A.H., Shokrollahi A., et al.: Noise Facilitation in Associative Memories of Exponential Capacity. Neural Computation, Vol. 26, no. 11, 2014, pp. 24932526. DOI 10.1162/NECO_a_00655

  136. Liu Chen, Wang Jiang, Yu Haitao, Deng Bin, Tsang K. M, Chan W. L, Wong Y. K: The effects of time delay on the stochastic resonance in feed-forward-loop neuronal network motifs. Communications in Nonlinear Science and Numerical Simulation, Vol. 19, no. 4, 2014, pp. 1088 – 1096. DOI 10.1016/j.cnsns.2013.08.021

  137. Yang X. L., Jia Y. B., Zhang L.: Impact of bounded noise and shortcuts on the spatiotemporal dynamics of neuronal networks. Physica A - Statistical Mechanics and its Applications, Vol. 393, 2014, pp. 617 – 623. DOI 10.1016/j.physa.2013.09.021

  138. Liu Ying, Li Chunguang: Stochastic resonance in feedforward-loop neuronal network motifs in astrocyte field. Journal of Theoretical Biology, Vol. 335, 2013, pp. 265 – 275. DOI 10.1016/j.jtbi.2013.07.007

  139. Noguchi T., Torikai H.: Ghost Stochastic Resonance From an Asynchronous Cellular Automaton Neuron Model. IEEE Trans on CAS II: Express Briefs, Vol. 60, no. 2, 2013, pp 111 – 115. DOI 10.1109/TCSII.2012.2235015

  140. Yu Haitao, Wang Jiang, Du Jiwei, Deng Bin, Wei Xile, Liu Chen: Effects of time delay on the stochastic resonance in small-world neuronal networks. Chaos, Vol. 23, no. 1, 2013, Article # 013128. DOI 10.1063/1.479082

  141. Wu Xinyi, Ma Jun, Li Fan, Jia Ya: Development of spiral wave in a regular network of excitatory neurons due to stochastic poisoning of ion channels. Communications in Nonlinear Science and Numerical Simulation, Vol. 18, no. 12, 2013, pp. 3350 – 3364. DOI 10.1016/j.cnsns.2013.05.011

  142. Uzuntarla M.: Inverse stochastic resonance induced by synaptic background activity with unreliable synapses. Physics Lett. A, Vol. 377, no. 38, 2013, pp. 2585 – 2589. DOI 10.1016/j.physleta.2013.08.009

  143. Yilmaz E., Uzuntarla M., Ozer M., Perc M.: Stochastic resonance in hybrid scale-free neuronal networks. Physica A - Statistical Mechanics and its Applications, Vol. 392, no. 22, 2013, pp. 5735 – 5741. DOI 10.1016/j.physa.2013.07.011

  144. Paprocki B., Szczepanski J.: Transmission efficiency in ring, brain inspired neuronal networks. Information and energetic aspects. Brain Research,  Vol. 1536, Special no., 2013, pp. 135 – 143. DOI 10.1016/j.brainres.2013.07.024

  145. Qin Ying-Mei, Wang Jiang, Men Cong, Chan Wai-Lok , Wei Xi-Le: Control of synchronization and spiking regularity by heterogenous aperiodic high-frequency signal in coupled excitable systems. Communications in Nonlinear Science and Numerical Simulation, Vol. 18, no. 10, 2013, pp. 2775 – 2782. DOI 10.1016/j.cnsns.2013.02.010

  146. Miniussi C., Harris J. A., Ruzzoli M.: Modelling non-invasive brain stimulation in cognitive neuroscience. Neuroscience and Biobehavioral Reviews, Vol. 37, no. 8, 2013, pp. 1702 – 1712. DOI 10.1016/j.neubiorev.2013.06.014

  147. Gong Yubing, Xu Bo, Wu Yanan: Adaptive coupling optimized spiking coherence and synchronization in Newman-Watts neuronal networks. Chaos, Vol. 23, no. 3, 2013, Article # 033105. DOI 10.1063/1.4813224

  148. Sun Jianbing, Deng Bin, Liu Chen, Yu Haitao, Wang Jiang, Wei Xile, Zhao Jia: Vibrational resonance in neuron populations with hybrid synapses. Applied Mathematical Modelling, Vol. 37, no. 9, 2013, pp. 6311 – 6324. DOI 10.1016/j.apm.2013.01.007

  149. Osoba O., Kosko B.: Noise-enhanced clustering and competitive learning algorithms. Neural Networks, Vol. 37, 2013, pp. 132 – 140. DOI 10.1016/j.neunet.2012.09.012

  150. Tatchim Bemmo D., Siewe Siewe M., Tchawoua C.: Combined effects of correlated bounded noises and weak periodic signal input in the modified FitzHugh–Nagumo neural model. Communications in Nonlinear Science and Numerical Simulation, Vol. 18, no. 5, 2013, pp. 1275 – 1287. DOI 10.1016/j.cnsns.2012.09.016

  151. Koutsou A., Kanev J., Christodoulou C.: Measuring input synchrony in the Omstein-Uhlenbeck neuronal model through input parameter estimation. Int. Workshop on Neural Coding (NC), 2012 DOI 10.1016/j.brainres.2013.05.012

  152. Guo Daqing, Li Chunguang: Stochastic resonance in Hodgkin–Huxley neuron induced by unreliable synaptic transmission. Journal of Theoretical Biology, Vol. 308, 2012, pp. 105 – 114. PMID 22687443

  153. Nobukawa S., Nishimura H.: Synchronous spike propagation in Izhikevich neuron system with spike-timing dependent plasticity. Proc. of SICE Annual Conference (SICE), 2012, pp. 453 – 458. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6318482&isnumber=6318306

  154. H. C.Tuckwell, J. Jost: Analysis of inverse stochastic resonance and the long-term firing of Hodgkin–Huxley neurons with Gaussian white noise. Physica A, Vol. 391, no. 22, 2012, pp. 5311 – 5325. DOI 10.1016/j.physa.2012.06.019

  155. Hailing W., Yingle F., Ke C.: Enhancement of Low-dose Lung CT Image Based on Stochastic Resonance of FHN Neurons. Space Medicine and Medical Engineering, Vol. 25, no. 2, 2012, pp. 121 – 125.

  156. Hardy L.C., Levine D.S., Dahai Liu: Neurohydrodynamics as a heuristic mechanism for cognitive processes in decision-making. Int. Joint Conference on Neural Networks (IJCNN), 2012, pp. 1 – 10. DOI 10.1109/IJCNN.2012.6252375

  157. Kawaguchi M., Mino H., Durand D.M.: Stochastic Resonance Can Enhance Information Transmission in Neural Networks. IEEE Trans on Biomedical Eng., Vol. 58, no. 7, 2011, pp. 1950 – 1958. DOI 10.1109/TBME.2011.2126571

  158. McDonnell M.D., Ward L.M.: The benefits of noise in neural systems: bridging theory and experiment. Nature Reviews Neuroscience, Vol. 12, 2011, pp. 415 – 426. DOI 10.1038/nrn3061

  159. Minato Kawaguchi, Hiroyuki Mino, Keiko Momose, D. M. Durand: Stochastic Resonance with a Mixture of Sub- and Supra-threshold Stimuli in a Population of Neuron Models. 3rd Annual Int. Conf. of the IEEE EMBS, Boston, Massachusetts USA, 2011 pp 7328 – 7331. DOI 10.1109/IEMBS.2011.6091709

  160. Kawaguchi M., Mino H., Momose K., Durand D.M.: Stochastic resonance with a mixture of sub-and supra-threshold stimuli in a population of neuron models. Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), 2011, pp. 7328 – 7331. DOI 10.1109/IEMBS.2011.6091709

  161. Nobukawa S., Nishimura H., Yamanishi T., Jian-Qin Liu: Signal response efficiency in Izhikevich neuron model. Proc. of SICE Annual Conference (SICE), 2011, pp. 1242 – 1247.  URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6060524&isnumber=6060171

  162. Osoba O., Mitaim S., Kosko B.: Noise benefits in the expectation-maximization algorithm: New theorems and models. Int. Joint Conference on Neural Networks (IJCNN), 2011, pp. 3178 – 3183. DOI 10.1109/IJCNN.2011.6033642

  163. Ushakov Y.V., Karandasov E.S., Dubkov A.A.: Ghost stochastic resonance in the model of neural auditory system. 21st Int. Conf. on Noise and Fluctuations (ICNF), 12-16 June 2011, pp 493 – 494. DOI 10.1109/ICNF.2011.5994378

  164. Gosak M., Korošak D., Marhl M.: Optimal network configuration for maximal coherence resonance in excitable systems. Physical Review E, Vol. 81, no. 5, 2010, Article # 056104. DOI 10.1103/PhysRevE.81.056104

  165. Applebaum D.: Extending Stochastic Resonance for Neuron Models to General Levy Noise. IEEE Trans. on Neural Networks, vol 20, no 12, 2009, pp. 1993 – 1995. DOI 10.1109/TNN.2009.2033183

  166. Gosak M., Korošak D., Marhl M.: Optimal network configuration for maximal coherence resonance in excitable systems. Physical Review E, Vol. 81, no. 5, 2010, Article # 056104. DOI 10.1103/PhysRevE.81.056104

  167. Ozer M., Matjaž Perc, M. Uzuntarla: Stochastic resonance on Newman–Watts networks of Hodgkin–Huxley neurons with local periodic driving. Physics Letters A, Vol. 373, no 10, 2009, pp 964 – 968. DOI 10.1016/j.physleta.2009.01.034 http://www.matjazperc.com/publications/PhysLettA_373_964.pdf

  168. A. Patel, B. Kosko: Stochastic Resonance in Continuous and Spiking Neuron Models With Levy Noise. IEEE Trans. on Neural Networks, Vol. 19, no. 12, December 2008, pp 1993 – 2008. DOI 10.1109/TNN.2008.2005610 

  169. Xue Lingyun, Li Meng, Fan Yingle: Research on suprathreshold stochastic resonance of FitzHugh-Nagumo neuron model. IEEE Int. Symp. on IT in Medicine and Education ( ITME 2008), 2008, pp. 1034 – 1039. DOI 10.1109/ITME.2008.4744027

  170. Leizhang Aiguo, Song Junhe: Stochastic resonance for detection of change in neuronal arrays with threshold. Int. Conf. on Information and Automation (ICIA 2008), 2008, pp. 925 – 930. DOI 10.1109/ICINFA.2008.4608132

  171. Gosak M., Marhl M., Perc M.: Spatial coherence resonance in excitable biochemical media induced by internal noise. Biophysical Chemistry, Vol. 128, no. 2-3, 2007, pp. 210 – 214. https://doi.org/10.1016/j.bpc.2007.04.007

  172. T. Oya, T. Asai, Y. Amemiya: Stochastic resonance in an ensemble of single-electron neuromorphic devices and its application to competitive neural networks. Chaos, Solitons and Fractals Vol. 32, no 2, 2007, pp 855 – 861. DOI 10.1016/j.chaos.2005.11.027

  173. F. Moss, J. K. Douglass, L. Wilkens, D.D Pierson, E. Pantazelou: Stochastic Resonance in an Electronic FitzHugh-Nagumo Model. Annals of the NYAS, Vol. 706, Issue Stochastic Processes in Astrophysics, 2006, pp 26 – 41. DOI 10.1111/j.1749-6632.1993.tb24679.x

  174. K. Hamaguchi , M. Okada , S. Kubota , K. Aihara: Stochastic Resonance of Localized Activity Driven by Common Noise. Biological Cybernetics, Vol. 92 , no. 6, June 2005, pp 438 – 444. DOI 10.1007/s00422-005-0570-2

  175. R. L. West, T. C. Stewart, S. Chandrasekharan, C. Lebiere: Stochastic Resonance in Human Cognition: ACT-R Versus Game Theory, Associative Neural Networks, Recursive Neural Networks, Q-Learning, and Humans. ACT-R, 2005, pp. 2353 – 2358.  

  176. S. Mitaim, B. Kosko: Adaptive Stochastic Resonance in Noisy Neurons Based on Mutual Information. IEEE Trans. on Neural Networks, vol. 15, no. 6, November 2004, pp 1526 – 1540. DOI 10.1109/TNN.2004.826218

  177. M. M. Osma, M. L. Palima, C. A. Saloma: Why is stochastic resonance enhancement intrinsic in biological neurons? Proc. of the 22nd National Physics Congress of the Samahang Pisika ng Pilipinas (SPP), Tagbilaran, Bohol, 2004

  178. F. Moss, L.M., Ward, W.G. Sannita: Stochastic resonance and sensory information processing: a tutorial and review of application. Clinical Neurophysiology, Vol. 115, no 2, 2004, pp 267 – 281. http://www.ncbi.nlm.nih.gov/pubmed/14744566

  179. B. Kosko, S. Mitaim: Robust stochastic resonance for simple threshold neurons. Physical Review E 70, 2004, pp 031911 1 – 10. DOI 10.1103/PhysRevE.70.031911

  180. Duan Jianghai, Song Aiguo, Wang Yiqing, Wen Xiulan: Stochastic resonance in a single bistable neuron and its application. Proc. of the 2003 Int. Conf. on Neural Networks and Signal Processing, vol 1, 2003, pp. 193 – 196. DOI 10.1109/ICNNSP.2003.1279244

  181. B. Kosko, S. Mitaim: Almost all noise types can improve the mutual information of threshold neurons that detect subthreshold signals. Proc. of the Int. Joint Conf. on Neural Networks, Vol. 4, 2003, pp 2740 – 2745. DOI 10.1109/IJCNN.2003.1224001

  182. T. Shimokawa, T. Oka, S. Sato: Linear response theory of stochastic resonance in a leaky integrate-and-fire neuron model. IEEE EMBS Asian-Pacific Conf. on Biomedical Engineering, 20-22 Oct. 2003 pp 330 – 331. DOI 10.1109/APBME.2003.1302718

  183. K. Kitajo, D. Nozaki, L. M. Ward, Y. Yamamoto: Behavioral Stochastic Resonance within the Human Brain. Phys. Rev. Lett. 90, Issue 21, May 2003, pp 218103 [4 pages]. DOI 10.1103/PhysRevLett.90.218103

  184. K. Linkenkaer-Hansen: Self-organized criticality and stochastic resonance in the human brain. Dissertation for the degree of Doctor of Science in Technology, Helsinki University of Technology (Espoo, Finland, 29th of November), 2002

  185. Mitaim S., Kosko B.: Adaptive stochastic resonance for noisy threshold neurons based on mutual information. Proc. of the 2002 Int. Joint Conf. on Neural Networks (IJCNN '02), 2002, vol 2, pp. 1980 – 1985. DOI 10.1109/IJCNN.2002.1007823

  186. Y. Gong, N. Matthews, N. Qian: Model for stochastic-resonance-type behavior in sensory perception. Physical Review E, vol 65, 2002, 031904-1 – 031904- 5. DOI 10.1103/PhysRevE.65.031904

  187. N. Hohn: Stochastic Resonance in a Neuron Model with Application to the Auditory Pathway. Thesis for the degree of Master of Science, The University of Melbourne, March 2001 (127 pages).

  188. G. Mato: Stochastic resonance using noise generated by a neural network. Physical Review E, Vol 59, No 3, March 1999, pp 3339 – 3343. DOI 10.1103/PhysRevE.59.3339

  189. H. E. Plesser: Aspects of Signal Processing in Noisy Neurons. Ph.D. Dissertation, Georg-August Universität zu Göttingen, 1999, pp 1 – 162

  190. R. Kothari, M. Dong, D. K. Bhatia: Neighborhood induced stochastic resonance. IJCNN'99 (Int. Joint Conf. on Neural Networks), Vol. 1, 10-16 July 1999, Washington, USA, pp 621 – 624. DOI 10.1109/IJCNN.1999.831570

  191. Daichi Nozaki, Yoshiharu Yamamoto: Enhancement of stochastic resonance in a FitzHugh-Nagumo neuronal model driven by colored noise. Physics Letters A, Vol. 243, no. 5-6, 1998, pp. 281 – 287. DOI 10.1016/S0375-9601(98)00247-3

  192. F. C. Coelho, C. T. Codeço: Frequency Tuning on Red Noise Driven Stochastic Resonance. Implications to the evolution of sensory systems. www.epress.com/w3jbio/vol4/coelho/paper.htm, 1998.

  193. G. Mato: Stochastic resonance in neural systems: Effect of temporal correlation in the spike trains. Physical Review E, Vol 58, No 1, July 1998, pp 876 – 880. DOI 10.1103/PhysRevE.58.876

  194. A. Longtin: Autonomous stochastic resonance in bursting neurons. Phys. Rev. E 55, Issue 1, Jan. 1997, pp 868 – 876. DOI 10.1103/PhysRevE.55.868 http://mysite.science.uottawa.ca/alongtin/documents/pre97autosr.pdf

  195. E. Ullner: Noise-induced phenomena of signal transmission in excitable neural models. Dissertation, Institut für Physik, Universität Potsdam, May 1994

  196. A. Longtin, A. Bulsara, F. Moss: Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Phys. Rev. Lett., Vol. 67, no 5, 1991, pp 656 – 659. DOI 10.1103/PhysRevLett.67.656


Copyright 2010 © UNESCO - All Rights Reserved.