Home
Glossary
Acronyms
Beware
Contact
 
 

PHYSICAL SOURCES of NOISE and their MODELS

"The secret to creativity is knowing how to hide your sources"

 (Albert Einstein)

General references

  1. Rumyantsev S., G Liu, W Stillman, M Shur, A A Balandin: Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms. J. Phys.: Condens. Matter, Vol. 22, 2010, pp 395302 – 395302-7. DOI 10.1088/0953-8984/22/39/395302 http://ndl.ee.ucr.edu/Balandin-JPCM-Noise-G.pdf

  2. F. Bonani, S. Donati Guerrieri, G. Ghione: Noise source modeling for cyclostationary noise analysis in large-signal device operation. IEEE Trans. on ED, Vol. ED-49, no. 9, 2002, pp. 1640–1647. DOI 10.1109/TED.2002.802638

  3. Pierce J.R.: Physical Sources of Noise. Proc of the IRE, vol. 44, no. 5, 1956, pp. 601 – 608. DOI 10.1109/JRPROC.1956.275123

  4. Petritz R.L.: On the Theory of Noise in P-N Junctions and Related Devices. Proc. of the IRE, vol. 40, no. 11, pp. 1440 – 1456., Nov. 1952 DOI 10.1109/JRPROC.1952.273978

 List on:         1/f noise

Avalanche noise

Barkhausen noise

Burst noise (popcorn or RTS noise)

Diffusion noise

Electrochemical noise

Generation-Recombination noise

Quantum noise

Shot noise

Thermal noise

 

    1/f noise (Flicker noise, Excess noise or Pink noise)

  1. Islam S., Bhattacharyya S., Kandala A., Richardella A., Samarth N., et al.: Bulk-impurity induced noise in large-area epitaxial thin films of topological insulators. Appl. Phys. Lett., Vol. 111, no. 6, 2017, Article # 062107. DOI http://dx.doi.org/10.1063/1.4998464

  2. Leibovich N., Dechant A., Lutz E., Barkai E.: Aging Wiener-Khinchin theorem and critical exponents of 1/f b noise. Physical Review E, Vol. 94, 2016, Article # 052130. DOI 10.1103/PhysRevE.94.052130

  3. Niemann M., Barkai E., Kantz H.: Renewal Theory for a System with Internal States. Mathematical Modelling of Nat. Phenomena, Vol. 11, no. 3, 2016, pp. 191 – 239. DOI 10.1051/mmnp/201611312

  4. Grueneis F.: Extremal Properties of an Intermittent Poisson Process Generating 1/f Noise. Fluct. Noise Lett., Vol. 15, no. 4, 2016, Article # 1650028. DOI 10.1142/S0219477516500280

  5. Kumar P., Sendelbach S., Beck M.A., et al.: Origin and Reduction of 1/f Magnetic Flux Noise in Superconducting Devices. Physical Review Applied, Vol. 6, no. 4, 2016, Article # 041001. DOI 10.1103/PhysRevApplied.6.041001

  6. Ruseckas J., Kazakevicius R., Kaulakys B.: 1/f noise from point process and time-subordinated Langevin equations. Journal of Statistical Mechanics - Theory & Experiment, Vol. 2016, 2016, Article # 054022. DOI 10.1088/1742-5468/2016/05/054022

  7. Ruseckas J., Kazakevicius R., Kaulakys B.: Coupled nonlinear stochastic differential equations generating arbitrary distributed observable with 1/f noise. Journal of Statistical Mechanics - Theory & Experiment, Vol. 2016, 2016, Article # 043209. DOI 10.1088/1742-5468/2016/04/043209

  8. Kolodiy Z.A., Mandziy B.A.: Calculation of Flicker Noise Power. Automatic Control & Computer Sciences, Vol. 50, no. 1, 2016, pp. 15 – 19. DOI 10.3103/S0146411616010041

  9. Pellegrini B., Marconcini P., Macucci M., et al.: Carrier density dependence of 1/f noise in graphene explained as a result of the interplay between band-structure and inhomogeneities. Journal of Statistical Mechanics - Theory & Experiment, Vol. 2016, 2016, Article # 054017. DOI 10.1088/1742-5468/2016/05/054017

  10. Sthal F., Devel M., Imbaud J., et al.: Study on the origin of 1/f noise in quartz resonators. Journal of Statistical Mechanics - Theory & Experiment, Vol. 2016, 2016, Article # 054025. DOI 10.1088/1742-5468/2016/05/054025

  11. Wang Lin-Lin, Peng Wu, Jiang Yu-Long: A Modified 1/f Noise Model for MOSFETs With Ultra-Thin Gate Oxide. IEEE ED Lett., Vol. 37, no. 5, 2016, pp. 537 – 540. DOI 10.1109/LED.2016.2536680

  12. Ahmed M., Butler D.P.: Bulk property of 1/f noise for piezoresistive Ni/Cr thin films in pressure sensors on flexible substrate. Microsystem Technologies – Micro & Nanosystems - Information Storage & Processing Systems, Vol. 22, no. 2, 2016, pp. 367 – 370. DOI 10.1007/s00542-014-2387-1

  13. Hsu Chih-Kai, Lin Chi-Yi, Li Wenwu, et al.: The impact of electrical contacts and contact-induced ultralow noise amplitudes in layered transistors. 2D Materials, Vol. 3, no. 4, 2016, Article # 045015. DOI 10.1088/2053-1583/3/4/045015

  14. Jozwikowski K., Jozwikowska A., Martyniuk A.: Dislocations as a Noise Source in LWIR HgCdTe Photodiodes. J. of Electronic Materials, Vol. 45, no. 10, 2016, pp. 4769 – 4781. DOI 10.1007/s11664-016-4390-z

  15. Koverda V.P., Skokov V.N.: Stochastic Synchronization in a Spatially Distributed System with 1/f Power Spectrum. Technical Physics, Vol. 61, no. 8, 2016, pp. 1135 – 1140. DOI 10.1134/S1063784216080168

  16. Ansari M.Z., Munjal S., Kumar V., et al.: Electrical conduction noise and its correlation with structural properties of Cu2ZnSnS4 thin films. Materials Research Express, Vol. 3, no. 7, 2016, Article # 076404. DOI 10.1088/2053-1591/3/7/076404

  17. Przybytek J., Fink-Finowicki J., Puzniak R., et al.: High frequency cut-off in 1/f conductivity noise of hole-doped La1-xCaxMnO3 manganite single crystals. Journal of Statistical Mechanics - Theory & Experiment, Vol. 2016, 2016, Article # 054024. DOI 10.1088/1742-5468/2016/05/054024

  18. Carla Marcello: Measure of 1/f noise using the sound card of a PC. American Journal of Physics, Vol. 84, no. 4, 2016, pp. 311 – 316. DOI 10.1119/1.4941305

  19. Zhao Qi-Feng, Zhuang Yi-Qi, Bao Jun-Lin, Hu Wei: Radiation-induced 1/f noise degradation of PNP bipolar junction transistors at different dose rates. Chinese Physics B, Vol. 25, no. 4, 2016, Article # 046104. DOI 10.1088/1674-1056/25/046104

  20. Yi Wei, Savel'ev S.E., Medeiros-Ribeiro G., et al.: Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors. Nature Communications, Vol. 7, 2016, Article # 11142. DOI 10.1038/ncomms11142

  21. Fang Wen, Veloso A., Simoen E., et al.: Impact of the Effective Work Function Gate Metal on the Low-Frequency Noise of Gate-All-Around Silicon-on-Insulator NWFETs. IEEE ED Lett., Vol. 37, no. 4, 2016, pp. 363 – 365. DOI 10.1109/LED.2016.2530849

  22. Kumar A., Kashid R., Ghosh A., et al.: Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode. ACS Applied Materials & Interfaces, Vol. 8, no. 12, 2016, pp. 8213 – 8223. DOI 10.1021/acsami.5b12393

  23. Takeshita Shunpei, Matsuo Sadashige, Tanaka Takahiro, et al.: Anomalous behavior of 1/f noise in graphene near the charge neutrality point. Applied Physics Lett., Vol. 108, no. 10, 2016, Article # 103106. DOI 10.1063/1.4943642

  24. Khurelbaatar Z., Kil Yeon-Ho, Shim Kyu-Hwan, et al.: Schottky barrier parameters and low frequency noise characteristics of graphene-germanium Schottky barrier diode. Superlattices and Microstructures, Vol. 91, 2016, pp. 306 – 312. DOI 10.1016/j.spmi.2016.01.029

  25. Arnold H.N., Sangwan V.K., Schmucker S.W., et al.: Reducing flicker noise in chemical vapor deposition graphene field-effect transistors. Applied Physics Lett., Vol. 108, no. 7, 2016, Article # 073108. DOI 10.1063/1.4942468

  26. Ninagawa Shigeru, Martinez Genaro J.: 1/f Noise in the Computation Process by Rule 110. Journal of Cellular Automata, Vol. 12, no. 1-2, Special no. SI, 2016, pp. 47 – 61.

  27. Sergeev V.A., Rezchikov S.E.: The Systematic Error of Measurement of the Exponent of the Frequency Dependence of the Spectrum of Low-Frequency Noise. Measurement Techniques, Vol. 58, no. 10, 2016, pp. 1160 – 1166. DOI 10.1007/s11018-015-0859-z

  28. Leibovich N., Barkai E.: Aging Wiener-Khinchin Theorem. Physical Review Lett., Vol. 115, no. 8, 2015, Article # 080602. DOI 10.1103/PhysRevLett.115.080602

  29. Rodriguez M.A.: Class of perfect 1/f noise and the low-frequency cutoff paradox. Physical Review E, Vol. 92, no. 1, 2015, Article # 012112. DOI 10.1103/PhysRevE.92.012112

  30. Grneis F.: Intermittent Phonon Scattering as a Possible Origin of 1/f Fluctuations in Metallic Resistors. Fluct. Noise Lett., Vol. 14, no. 02, 2015, Article # 1550018. DOI 10.1142/S0219477515500182

  31. Sthal F., Devel M., Imbaud J., et al.: Fluctuation-dissipation theorem and 1/f noise of bulk acoustic wave cavities. Applied Physics Lett., Vol. 107, no. 10, 2015, Article # 103502. DOI 10.1063/1.4930167

  32. Fleetwood D.M.: 1/f Noise and Defects in Microelectronic Materials and Devices. IEEE Trans on Nuclear Science, Vol. 62, no. 4, 2015, pp. 1462 – 1486. DOI 10.1109/TNS.2015.2405852

  33. Qifeng Zhao, Yiqi Zhuang, Junlin Bao, Wei Hu: 1/f Noise Model for NPN Bipolar Junction Transistors Based on Radiation Effect. IEEE Trans on Nuclear Science, Vol. 62, no. 4, 2015, pp. 1682 – 1688. DOI 10.1109/TNS.2015.2456132

  34. Kayyalha M., Chen Y.P.: Observation of reduced 1/f noise in graphene field effect transistors on boron nitride substrates. Applied Physics Lett., Vol. 107, no. 11, 2015, Article # 113101. DOI 10.1063/1.4930992

  35. Stolyarov M.A., Liu Guanxiong, Rumyantsev S.L., Shur, Balandin M., Alexander A.: Suppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors. Applied Physics Lett., Vol. 107, no. 2, 2015, Article # 023106. DOI 10.1063/1.4926872

  36. Ou J.: Determination of transconductance-to-drain-current dependent flicker noise parameters. IEEE Dallas Circuits and Systems Conf. (DCAS), 2015, pp. 1 – 4. DOI 10.1109/DCAS.2015.7356582

  37. Song Xiang-Xiang, Li Hai-Ou, You Jie, et al.: Suspending Effect on Low-Frequency Charge Noise in Graphene Quantum Dot. Scientific Reports, Vol. 5, 2015, Article # 8142. DOI 10.1038/srep08142

  38. Kaulakys B., Alaburda M., Ruseckas J.: 1/f noise from the nonlinear transformations of the variables. Modern Physics Lett. B, Vol. 29, no. 34, 2015, Article # 1550223. DOI 10.1142/S0217984915502231

  39. Palenskis V., Maknys K.: Nature of low-frequency noise in homogeneous semiconductors. Scientific Reports, Vol. 5, 2015, Article # 18305. DOI 10.1038/srep18305

  40. Kendal W.S., Jorgensen B.: A Scale Invariant Distribution of the Prime Numbers. Computation, Vol. 3, no. 4, 2015, pp. 528 – 540. DOI 10.3390/computation3040528

  41. Wu Hao, Li Kui, Shi Wenzhong, et al.: A wavelet-based hybrid approach to remove the flicker noise and the white noise from GPS coordinate time series. GPS Solutions, Vol. 19, no. 4, 2015, pp. 511 – 523. DOI 10.1007/s10291-014-0412-6

  42. Dechant A., Lutz E.: Wiener-Khinchin Theorem for Nonstationary Scale-Invariant Processes. Physical Review Lett., Vol. 115, no. 8, 2015, Article # 080603. DOI 10.1103/PhysRevLett.115.080603

  43. Adak O., Rosenthal E., Meisner J., et al.: Flicker Noise as a Probe of Electronic Interaction at Metal-Single Molecule Interfaces. NANO Lett., Vol. 15, no. 6, 2015, pp. 4143 – 4149. DOI 10.1021/acs.nanolett.5b01270

  44. Z. Kolodiy, S. Yatsyshyn, B. Stadnyk: Metrological Array of Cyber-Physical Systems. Part 4. Non-Invasive Diagnostics. Sensors & Transducers, Vol. 187, no. 4, 2015, pp. 108112. http://www.sensorsportal.com/HTML/DIGEST/P_2652.htm

  45. Giusi G., Aoulaiche M., Swerts J., Popovici M., Redolfi A., Simoen E., Jurczak M.: Impact of Electrode Composition and Processing on the Low-Frequency Noise in SrTio3 MIM Capacitors. IEEE ED Lett., Vol. 35, no. 9, 2014, pp. 942 – 944. DOI 10.1109/LED.2014.2335771

  46. Anandan P., Nithya A., Mohankumar N.: Simulation of flicker noise in gate-all-around Silicon Nanowire MOSFETs including interface traps. Microelectronics Reliability, Vol. 54, no. 12, 2014, pp. 27232727. DOI 10.1016/j.microrel.2014.07.145

  47. Higashi Yusuke, Momo Nobuyuki, Sasaki Hiroki, et al.: Unified Transient and Frequency Domain Noise Simulation for Random Telegraph Noise and Flicker Noise Using a Physics-Based Model. IEEE Trans on ED, Vol. 61, no. 12, 2014, pp. 41974203.

  48. Sadegh Sanaz, Barkai Eli, Krapf Diego: 1/f noise for intermittent quantum dots exhibits non-stationarity and critical exponents. New Journal of Physics, Vol. 16, 2014, Article # 113054. DOI 10.1088/1367-2630/16/11/113054

  49. Dasgupta Avirup, Khandelwal Sourabh, Chauhan, Yogesh Singh: Compact Modeling of Flicker Noise in HEMTs. IEEE Journal of the Electron Dev. Society, Vol. 2, no. 6, 2014, pp. 174178. DOI 10.1109/JEDS.2014.2347991

  50. Rodriguez M.A.: Complete spectral scaling of time series: Towards a classification of 1/f noise. Physical Review E, Vol. 90, no. 4, 2014, Article # 042122. DOI 10.1103/PhysRevE.90.042122

  51. Ali Md Manirul, Lo Ping-Yuan, Zhang Wei-Min: Exact decoherence dynamics of 1/f noise. New Journal of Physics, Vol. 16, 2014, Article # 103010. DOI 10.1088/1367-2630/16/10/103010

  52. Kazakevicius R., Ruseckas J.: Levy flights in inhomogeneous environments and 1/f noise. Physica A - Statistical Mechanics and its Applications, Vol. 411, 2014, pp. 95103. DOI 10.1016/j.physa.2014.06.020

  53. Ruseckas J., Kaulakys B.: Scaling properties of signals as origin of 1/f noise. Journal of Statistical Mechanics - Theory & Experiment, 2014, Article # P06005. DOI 10.1088/1742-5468/2014/06/P06005

  54. Chamberlin R.V., Nasir D.M.: 1/f noise from the laws of thermodynamics for finite-size fluctuations. Physical Review E, Vol. 90, no. 1, 2014, Article # 012142. DOI 10.1103/PhysRevE.90.012142

  55. Grueneis F.: An Intermittent Poisson Process Generating 1/f Noise with Possible Application to Fluorescence Intermittency. Fluct. & Noise Lett., Vol. 13, no. 2, 2014, Article # 1450015. DOI 10.1142/S0219477514500151

  56. Liu Heng, Lhuillier E., Guyot-Sionnest P.: 1/f noise in semiconductor and metal nanocrystal solids. J. of Applied Physics, Vol. 115, no. 15, 2014, Article # 154309. DOI 10.1063/1.4871682

  57. Ye Bin, Qiu Liang: 1/f Noise in Ising Quantum Computers. Fluct. & Noise Lett., Vol. 13, no. 1, 2014, Article # 1450006. DOI 10.1142/S0219477514500060

  58. Kwon Hyuk-Jun, Kang Hongki, Jang Jaewon, et al.: Analysis of flicker noise in two-dimensional multilayer MoS2 transistors. Applied Physics Lett., Vol. 104, no. 8, 2014, Article # 083110. DOI 10.1063/1.4866785

  59. Kang Hongki, Subramanian Vivek: Measurement and analysis of 1/f noise under switched bias in organic thin film transistors. Applied Physics Lett., Vol. 104, no. 2, 2014, Article # 023301. DOI 10.1063/1.4858935

  60. Niemann M., Kantz H., Barkai E.: Fluctuations of 1/f Noise and the Low-Frequency Cutoff Paradox. Physical Review Lett., Vol. 110, 2013, Article # 140603. DOI 10.1103/PhysRevLett.110.140603

  61. E.I. Shmelev, A.V. Klyuev, A.V. Yakimov: Complexes of Spatially Multistable Defects as the Source of 1/f Noise in GaAs Devices. Fluct. Noise Lett., Vol. 12, no. 1, 2013, Article # 1350008. DOI 10.1142/S0219477513500089

  62. Rumyantsev S.L., D. Coquillat, R. Ribeiro, M. Goiran, W. Knap, M.S. Shur, A.A. Balandin, M.E. Levinshtein: The effect of a transverse magnetic field on 1/f noise in graphene. Appl. Phys. Lett., Vol. 103, 2013, Article # 173114 (4 pages). DOI 10.1063/1.4826644

  63. Cher Xuan Zhang, Xiao Shen, En Xia Zhang, Fleetwood D.M., Schrimpf R.D., Francis S.A., Roy T., Dhar S., Sei-Hyung Ryu, Pantelides S.T.: Temperature Dependence and Postirradiation Annealing Response of the 1/f Noise of 4H-SiC MOSFETs. IEEE Trans on ED, Vol. 60, no. 7, 2013, pp. 2361 – 2367. DOI 10.1109/TED.2013.2263426

  64. Bo Chin Wang, San Lein Wu, Yu Ying Lu, Shoou Jinn Chang, Jone Fang Chen, Shih Chang Tsai, Che Hua Hsu, Chih Wei Yang, Cheng Guo Chen, Cheng O., Po Chin Huang: Comparison of the Trap Behavior Between ZrO2 and HfO2 Gate Stack nMOSFETs by 1/f Noise and Random Telegraph Noise. IEEE ED Lett., Vol. 34, no. 2, 2013, pp. 151 – 153. DOI 10.1109/LED.2012.2226698

  65. Vandamme L.K.J.: How useful is Hooge's empirical relation. Int. Conf on Noise and Fluctuations (ICNF), 2013, pp.1 – 6. DOI 10.1109/ICNF.2013.6578875

  66. Handel P.H., Avanaki K.N.: Dependence of 1/f noise on the distance between wires: Quantum 1/f proximity effect. Int. Conf on Noise and Fluctuations (ICNF), 2013, pp. 1 – 4. DOI 10.1109/ICNF.2013.6578921 http://jci2012.sciencesconf.org/conference/icnf2013/cache/export/12290.pdf

  67. Benedetti C., Paris M.G.A, Buscemi F., Bordone P.: Time-evolution of entanglement and quantum discord of bipartite systems subject to 1/fα noise. Int. Conf on Noise and Fluctuations (ICNF), 2013, pp. 1 – 4. DOI 10.1109/ICNF.2013.6578952

  68. Handel P.H., Tournier A.G.: Quantum 1/f noise in spintronics and the future of downscaling. Int. Conf on Noise and Fluctuations (ICNF), 2013, pp. 1 – 4. DOI 10.1109/ICNF.2013.6578975

  69. Jung-Kyu Lee, Sunghun Jung, Byeong-In Choe, Jinwon Park, Sung-Woong Chung, Jae Sung Roh, Sung-Joo Hong, Chan Hyeong Park, Byung-Gook Park, Jong-Ho Lee: Flicker Noise Behavior in Resistive Memory Devices With Double-Layered Transition Metal Oxide. IEEE ED Lett., Vol. 34, no. 2, 2013, pp 244 – 246. DOI 10.1109/LED.2012.2235401

  70. Kazakov K.A.: A Case Study on the Scaling of 1/f Noise: La2/3Sr1/3MnO3 Thin Films. Journal of Applied Physics, Vol. 113, no. 9, 2013, Article # 094901. DOI 10.1063/1.4794202

  71. Mouetsi S., El Hdiy A.: Contribution to the 1/f Noise Analysis in a Bi-dimensional Electron Gas. Journal of Applied Physics, Vol. 114, no. 10, 2013, pp. 104507-1 – 104507-3. DOI 10.1063/1.4821129

  72. Z. Kolodiy, A. Kolodiy: Fluctuations of flicker type in technical and natural systems. 22nd Int. Conf on Noise Fluctuations, 2013, pp. 131. DOI 10.1109/ICNF.2013.6578927

  73. Hossain M.Z., Rumyantsev S., Shur M.S., Balandin A.A: Reduction of 1/f noise in Graphene after Electron-beam Irradiation. Applied Physics Letters, Vol. 102, no. 15, 2013, Article # 153512. DOI 10.1063/1.4802759

  74. Seongmin Kim, Patrick D. Carpenter, Rand K. Jean, Haitian Chen, Chongwu Zhou, Sanghyun Ju, David B. Janes: Role of Self-Assembled Monolayer Passivation in Electrical Transport Properties and Flicker Noise of Nanowire Transistors. ACS Nano, 2012. DOI 10.1021/nn302484c

  75. Dong Soo Kim, Seung-Man Park, Hee Chul Lee : Surface treatment method for 1/f noise suppression in reactively sputtered nickel oxide film. J. Appl. Phys. Vol. 112, no 2, 2012, pp 024501 (4 pages) DOI 10.1063/1.4736590

  76. P. Gaubert, A. Teramoto, T. Ohmi: 1/f Channel Noise at High Drain Current in MOS Transistors. Fluct. Noise Lett., Vol. 10, no. 4, 2011, pp. 431 – 445. DOI 10.1142/S0219477511000673

  77. Levinzon F. A., L.K.J. Vandamme: Comparison of 1/f Noise in JFETs and MOSFETs with Several Figures of Merit. Fluct. Noise Lett., Vol. 10, no. 4, 2011, pp. 447 – 465. DOI 10.1142/S0219477511000685

  78. Vandamme L.K.J., M. Clle, D.M. de Leeuw, F. Verbakel: Low-Frequency Noise to Characterize Resistive Switching of Metal Oxide on Polymer Memories. Fluct. Noise Lett., Vol. 10, no. 4, 2011, pp. 497 – 514. DOI 10.1142/S0219477511000739

  79. Mihaila M.N.: Atomic vibration-induced 1/ƒ noise in sensing nanomaterials. 21st Int. Conf. on Noise and Fluctuations (ICNF), 2011, pp 61 – 64. DOI 10.1109/ICNF.2011.5994385

  80. Shmelev E.I., Klyuev A.V., Yakimov A.V.: Defects influenced by the Jahn-Teller effect as the sources of flicker noise in GaAs based devices. 21st Int. Conf. on Noise and Fluctuations (ICNF), 2011, pp 176 – 179. DOI 10.1109/ICNF.2011.5994293

  81. Rodriguez A.L., Jimenez Tejada J.A., Gonzalez M.M., Planes M.R., Varo P.L., Godoy A.: Study of 1/f and generation-recombination noise in four gate transistors. 21st Int. Conf. on Noise and Fluctuations (ICNF), 2011, pp 283 – 286. DOI 10.1109/ICNF.2011.5994322

  82. Marinov O., Deen M.J.: Flicker noise due to variable range hopping in organic thin-film transistors. 21st Int. Conf. on Noise and Fluctuations (ICNF), 2011, pp 287 – 290. DOI 10.1109/ICNF.2011.5994323

  83. Hossain M.Z., Shahil K.M.F., Teweldebrhan D., Balandin A.A., Rumyantsev S.L., Shur M.: Low-frequency 1/f noise in bismuth selenide Topological Insulators. 21st Int. Conf. on Noise and Fluctuations (ICNF), 2011, pp 480 – 482. DOI 10.1109/ICNF.2011.5994374

  84. Pascal F., Raoult J., Sagnes B., Hoffmann A., Haendler S., Morin G.: Improvement of 1/f noise in advanced 0.13 m BiCMOS SiGe:C Heterojunction Bipolar Transistors. 21st Int. Conf. on Noise and Fluctuations (ICNF), 2011, pp 279 – 282. DOI 10.1109/ICNF.2011.5994321

  85. Baek R. H., Baek C.-K., Choi H.-S., Lee J.-S., Yeoh Y. Y., Yeo K. H., Kim D.-W., Kim K, Kim D.-M., Jeong Y.-H.: Characterization and Modeling of 1/f Noise in Si-Nanowire FETs: Effects of Cylindrical Geometry and Different Processing of Oxides. IEEE Trans on Nanotechnology, Vol. 10, no. 3, 2010, pp. 417 – 423. DOI 10.1109/TNAno. 2010.2044188

  86. Grueneis F.: 1/f Noise in Extrinsic Semiconductor Materials Interpreted as Modulated Generation-Recombination Noise. Fluctuation & Noise Lett., Vol. 9, no. 2, 2010, pp. 229 – 243. DOI 10.1142/S0219477510000137

  87. Rajan Nitin K., Routenberg D. A., Chen Jin, Reed M. A.: Temperature dependence of 1/f noise mechanisms in silicon nanowire biochemical field effect transistors. Applied Physics Letters, vol. 97, no. 24, 2010, pp. 243501 – 243501-3. DOI 10.1063/1.3526382

  88. Sunkook Kim, Seongmin Kim, David B J., Saeed Mohammadi, Juhee Back, Moonsub Shim: DC modeling and the source of flicker noise in passivated carbon nanotube transistors. Nanotechnology, Vol 21, no 38, 2010, pp 385203. DOI 10.1088/0957-4484/21/38/385203

  89. Dmitriev A.P., M.E. Levinshtein, S.L. Rumyantsev: On the Hooge relation in semiconductors and metals. J. Appl. Phys., Vol. 106, no. 2, 2009, Article # 024514. http://dx.doi.org/10.1063/1.3186620

  90. Andrei P., Kruppa W., Boos J. B., Bennett B. R.: Spatial localization of 1/f noise sources in AlSb/InAs high-electron-mobility transistors. Journal of Applied Physics, vol. 106, no. 3, 2009, pp. 034504 – 034504-7. DOI 10.1063/1.3194312

  91. Crupi F., Giusi G., Iannaccone G., Magnone P., Pace C., Simoen E., Claeys C.: Analytical model for the 1/f noise in the tunneling current through metal-oxide-semiconductor structures. Journal of Applied Physics, vol. 106, no. 7, 2009, pp. 073710 – 073710-6. DOI 10.1063/1.3236637

  92. Bertuccio G., Caccia S.: Noise Minimization of MOSFET Input Charge Amplifiers Based on Δμ and ΔN1/f Models. IEEE Trans on Nuclear Science, vol. 56, no. 3, 2009, pp. 1511 – 1520. DOI 10.1109/TNS.2008.2012347

  93. Kinch M. A., Wan C.-F., Schaake H., Chandra D.: Universal 1/f noise model for reverse biased diodes. Applied Physics Letters, vol. 94, no. 19, 2009, pp. 193508 – 193508-3. DOI 10.1063/1.3133982

  94. Izpura J.L.: On the Electrical Origin of Flicker Noise in Vacuum Devices. IEEE Trans on Instr. & Meas., Vol. 58, no 10, 2009, pp 3592 – 3601. DOI 10.1109/TIM.2009.2018692

  95. Ferdi Y., Taleb-Ahmed A., Lakehal M.R.: Efficient Generation of 1/fβ Noise Using Signal Modeling Techniques. IEEE Trans on CAS I: Regular Papers, vol. 55, no. 6, 2008, pp. 1704 – 1710. DOI 10.1109/TCSI.2008.918173

  96. Crupi F., Magnone P., Iannaccone G., Giusi G., Pace C., Simoen E., Claeys C.: Modeling the gate current 1/f noise and its application to advanced CMOS devices. 9th Int. Conf on Solid-State and Integrated-Circuit Technology (ICSICT 2008), 2008, pp. 420 – 423. DOI 10.1109/ICSICT.2008.4734564

  97. Magnone P., Crupi F., Iannaccone G., Giusi G., Pace C., Simoen E., Claeys C.: A model for MOS gate stack quality evaluation based on the gate current 1/f noise. 9th Int. Conf on Ultimate Integration of Silicon (ULIS 2008), 2008, pp. 141 – 144. DOI 10.1109/ULIS.2008.4527159

  98. Izpura J.-L.: 1/f Electrical Noise in Planar Resistors: The Joint Effect of a Backgating Noise and an Instrumental Disturbance. IEEE Trans on Instr. & Meas., Vol. 57, no 3, 2008, pp 509 – 517. DOI 10.1109/TIM.2007.911642

  99. Raoult J., Pascal F., Delseny C., Marin M., Deen M. J.: Impact of carbon concentration on 1/f noise and random telegraph signal noise in SiGe:C heterojunction bipolar transistors. Journal of Applied Physics, vol. 103, no. 11, 2008, pp. 114508 – 114508-10. DOI 10.1063/1.2939252

  100. Morshed T., Devireddy S.P., Rahman M.S., Celik-Butler Z., Hsing-Huang Tseng, Zlotnicka A., Shanware A., Green K., Chambers J.J., Visokay M.R., Quevedo-Lopez M.A., Colombo L.: A new model for 1/f noise in high-κ MOSFETs. IEEE Int. Electron Devices Meeting (IEDM 2007), 2007, pp. 561 – 564. DOI 10.1109/IEDM.2007.4419000

  101. Klaassen, K.B.; Taratorin A.M.: Is Electrical 1/f Noise in Tunneling Magnetoresistive Heads a Form of Equilibrium Noise? IEEE Trans on Magnetics, vol. 43, no. 6, 2007, pp. 2193 – 2195. DOI 10.1109/TMAG.2007.892535

  102. Appenzeller J., Yu-Ming Lin, Knoch J., Zhihong Chen, Avouris P.: 1/f Noise in Carbon Nanotube Devices—On the Impact of Contacts and Device Geometry. IEEE Trans on Nanotechnology, Vol. 6, no 3, 2007, pp 368 – 373. DOI 10.1109/TNANO.2007.892052

  103. Videnovic-Misic M., Jevtic M.M.: Modelling of Dual-Gate MOSFET 1/f Noise in Linear Region. The Int. Conf. on "Computer as a Tool” (EUROCON 2007), 2007, pp. 1987 – 1993. DOI 10.1109/EURCON.2007.4400298

  104. Jayanta Mukherjee, Roblin P., Akhtar S.: An Analytic Circuit-Based Model for White and Flicker Phase Noise in LC Oscillators. IEEE Trans on CAS I: Regular Papers, vol. 54, no. 7, 2007, pp. 1584 – 1598. DOI 10.1109/TCSI.2007.898673

  105. Moryashin A., Obolensky S., Perov M., Yakimov A.: Natural ageing effects of Schottky-gate GaAs FETs in current-voltage characteristics and in 1/f noise spectrum. Radiophysics & Quantum Electronics, Vol. 50, no. 2, 2007, pp. 135 – 145. DOI 10.1007/s11141-007-0012-1.

  106. Jurchescu O.D., Hamadani B.H., Hao Xiong, Park S.K., Subramanian S., Zimmerman N.M., Anthony J., Jackson T.N., Gundlach D.J.: Influence of the film microstructure on the electronic properties and flicker noise in organic thin film transistors. Int. Semiconductor Dev. Research Symp., 2007, pp. 1 DOI 10.1109/ISDRS.2007.4422500

  107. Pflanzi W.C., Seebacher E., Huszka Z.: 1/f noise corner modeling. Proc of the Int. Conf. Mixed Design of Integrated Circuits and System (MIXDES 2006), 2006, pp. 122 – 124. DOI 10.1109/MIXDES.2006.1706551

  108. Briman M., Bradley K., Gruner G.: Source of 1/f noise in carbon nanotube devices. J. of Applied Physics, vol. 100, no 1, 2006, pp 013505 – 013505-5. DOI 10.1063/1.2210570

  109. M. Ishigami, J. H. Chen, E. D. Williams, David Tobias, Y. F. Chen, M. S. Fuhrer: Hooge’s Constant for Carbon Nanotube Field Effect Transistors. Appl. Phys. Lett., Vol. 88, no 20, 2006, pp 203116.1 – 203115.3. DOI 10.1063/1.2206685

  110. Martinez F., Soliveres S., Leyris C., Valenza M.: 1/f gate tunneling current noise model of ultrathin oxide MOSFETs. IEEE Int. Conf. on Microelectronic Test Structures (ICMTS 2006), 2006, pp. 193 – 198. DOI 10.1109/ICMTS.2006.1614302

  111. Erturk M., Xia T., Anna R., Newton K.M., Adler E.: Statistical BSIM model for MOSFET 1/f noise. Electronics Letters, vol. 41, no. 22, 2005, pp. 1208 – 1210. DOI 10.1049/el:20052372

  112. Gleeson J. P.: An exactly solvable model of continuous, stationary 1/f noise. Phys. Rev. E., Vol 72, 2005, pp 011106-1 – 011106-7. http://www.ul.ie/gleesonj/Papers/Gleeson_PRE05.pdf

  113. Katz O., Bahir G., Salzman J.: Low-frequency 1/f noise and persistent transients in AlGaN-GaN HFETs. IEEE ED Letters, vol. 26, no. 6, 2005, pp. 345 – 347. DOI 10.1109/LED.2005.848092

  114. Narasimha R., Bandi S.P., Rao R.M., Mukund P.R.: 1/f noise synthesis model in discrete-time for circuit simulation. IEEE Trans on CAS I: Regular Papers, vol. 52, no. 6, 2005, pp. 1104 – 1114. DOI 10.1109/TCSI.2005.849112

  115. Narasimha R., Bandi S., Rao R., Mukund P.R.: Discrete-Time Simulation Model for 1/f Noise. IEEE Trans on ED, vol 51, no 8, 2004, pp 1340 – 1343. DOI 10.1109/TED.2004.831957

  116. Chengxin Liu, McNeill J.A.: Jitter in oscillators with 1/f noise sources. Proc of the 2004 Int. Symp. on Circuits and Systems (ISCAS '04), vol.1, 2004, pp. I-773-6 DOI 10.1109/ISCAS.2004.1328309

  117. Lewis N., Monnerie G., Sabatier J., Melchior P., Robbe M., Levi H.: Using fractional differentiation for the modelling of 1/f1 noise application to discrete-time noise sources in VHDL-AMS. 2004 IEEE Int. Symp. on Industrial Electronics, vol. 1, 2004, pp. 205 – 210. DOI 10.1109/ISIE.2004.1571808

  118. Valenza M., Hoffmann A., Sodini D., Laigle A., Martinez F., Rigaud D.: Overview of the impact of downscaling technology on 1/f noise in p-MOSFETs to 90 nm. IEE Proc. - Circuits, Devices and Systems, vol. 151, no. 2, 2004, pp. 102 – 110. DOI 10.1049/ip-cds:20040459

  119. Pichon L., Routoure J.M., Carin R., Nze Mekwama L.: Subthreshold region conduction and 1/f noise empirical models in N-MOSFETs. 33rd Conf on European Solid-State Device Research (ESSDERC '03), 2003, pp. 445 – 448. DOI 10.1109/ESSDERC.2003.1256909

  120. Fleetwood D.M., Xiong H.D., Lu Z.-Y., Nicklaw C.J., Felix J.A., Schrimpf R.D., Pantelides S.T.: Unified model of hole trapping, 1/f noise, and thermally stimulated current in MOS devices. IEEE Trans on Nuclear Science, vol. 49, no. 6, 2002, pp. 2674 – 2683. DOI 10.1109/TNS.2002.805407

  121. Zhao E.,Celik-Butler, Thiel F., Dutta R.: Temperature Dependence of 1/f Noise in Polysilicon Emitter Bipolar Transistors. IEEE Trans. on Electr Dev., Vol 49, no 12, Dec 2002, pp 2230 – 2236. DOI 10.1109/TED.2002.805223

  122. Omura Yasuhisa: Hooge parameter in buried-channel metal-oxide-semiconductor field-effect transistors. Journal of Applied Physics, vol. 91, no. 3, 2002, pp. 1378 – 1384. DOI 10.1063/1.1434543

  123. Kar Swastik, Raychaudhuri A. K.: Onset of long-range diffusion and exponent of 1/fα noise in metal films with electromigration damage. Applied Physics Letters, Vol. 81, no. 27, 2002, pp. 5165 – 5167. DOI 10.1063/1.1523155

  124. Rahal M., Lee M., Burdett A.P.: Flicker Noise in Gate Overlapped Polycrystalline Silicon Thin-Film Transistors. IEEE Trans. on ED, vol. 49, no. 2, Feb. 2002, pp 319 – 323. DOI 10.1109/16.981224

  125. Jiansheng Xu, Deen M.J.: MOSFET 1/f noise model based on mobility fluctuation in linear region. Electronics Letters, vol. 38, no. 9, 2002, pp. 429 – 431. DOI 10.1049/el:20020282

  126. Borovitskaya E., Shur M.S.: On Theory of 1/f Noise in Semiconductors. Solid-State Electr., Vol. 45, 2001, pp 1067 – 1069. doi:10.1016/S0038-1101(01)00137-X

  127. Tian H., El Gamal A.: Analysis of 1/f Noise in Switched MOSFET Circuits. Internal Report, Stanford University, April 24, 2001. http://isl.stanford.edu/groups/elgamal/abbas_publications/J037.pdf

  128. Tian H., El Gamal A.: Analysis of 1/f Noise in Switched MOSFET Circuits. IEEE Trans on CAS II: Analog and Digital Signal Processing, vol. 48, no. 2, 2001, pp.151 – 157. DOI 10.1109/82.917783

  129. Levernhe F., Montseny G., Audounet J.: Markovian diffusive representation of 1/fα noises and application to fractional stochastic differential models. IEEE Trans on Signal Processing, vol. 49, no. 2, 2001, pp. 414 – 423. DOI 10.1109/78.902124

  130. Vandamme E.P., Vandamme L.K.J.: Critical discussion on unified 1/f noise models for MOSFETs. IEEE Trans on ED, vol. 47, no. 11, 2000, pp. 2146 – 2152. DOI 10.1109/16.877177

  131. Martin S., Li G.P., Huinan Guan, D'Souza S.: A BSIM3-based flat-band voltage perturbation model for RTS and 1/f noise. IEEE ED Letters, vol. 21, no. 1, 2000, pp. 30 – 33. DOI 10.1109/55.817443

  132. Kumar A., Kalra E., Haldar S., Gupta R.S.: 1/f noise model of fully overlapped lightly doped drain MOSFET. IEEE Trans on ED, vol. 47, no. 7, 2000, pp. 1426 – 1430. DOI 10.1109/16.848287

  133. Rhayem J., Rigaud D., Valenza M., Szydlo N., Lebrun H.: 1/f noise modeling in long channel amorphous silicon thin film transistors. Journal of Applied Physics, vol. 87, no. 4, 2000, pp. 1983 – 1989. DOI 10.1063/1.372124

  134. Bozhkov V. G., Vasiliev O. V.: Low-frequency Noise in Metal-Semiconductor Contacts with local Barrier Height Lowering. Solid-State Electr., Vol. 44, 2000, pp 1487 – 1494. doi:10.1016/S0038-1101(00)00066-6

  135. Rhayem J., Rigaud D., Contaret T., Valenza M., Szydlo N., Lebrun H.: 1/f Noise Modeling in a-Si TFTs by BSIM Software. Proc of the 30th European Solid-State Device Research Conf., 2000, pp. 152 – 155. DOI 10.1109/ESSDERC.2000.194737

  136. Van der Wel A.P., Klumperink E.A.M., Gierkink S.L.J., Wassenaar R.F., Wallinga H.: MOSFET 1/f noise measurement under switched bias conditions. IEEE ED Letters, vol. 21, no. 1, 2000, pp. 43 – 46. DOI 10.1109/55.817447

  137. Rhayem J., Rigaud D., Valenza M., Szydlo N., Lebrun H.: 1/f Noise Simulation in a-Si TFTs over Linear, Saturation and Subthreshold Regions. Comparison to BSIM Model. Proc of the 29th European Solid-State Device Research Conf., vol. 1, 1999, pp. 472 – 475. Print ISBN: 2-86332-245-1

  138. Degerli Y., Lavernhe F., Magnan P., Farre J.: Bandlimited 1/fα-noise source. Electronics Letters, vol. 35, no. 7, 1999, pp. 521 – 522. DOI 10.1049/el:19990417

  139. Soltani S., Simard P., Boichu D.: A multiscale method for 1/f noise modeling: application to linear prediction. Proc of the 16th IEEE Instrum. & Meas. Technology Conf. (IMTC/99), vol. 2, 1999, pp.1034 – 1037. DOI 10.1109/IMTC.1999.777017

  140. Tsarapkin D.P.: A phenomenological model of 1/f noise. Proc. of the 1999 Joint Meeting of the European Frequency and Time Forum and the IEEE Int. Frequency Control Symp., vol. 2, 1999, pp. 1204 – 1206. DOI 10.1109/FREQ.1999.841557

  141. Balandin A., Wang K.L., Svizhenko A., Bandyopadhyay S.: The fundamental 1/f noise and the Hooge parameter in semiconductor quantum wires. IEEE Trans on ED, vol. 46, no. 6, 1999, pp. 1240 – 1244. DOI 10.1109/16.766892

  142. Berntgen J., Heime K., Daumann W., Auer U., Tegude F.J.: The 1/f Noise of InP Based 2DEG Devices and its Dependence on Mobility. IEEE Trans on ED, vol. 46, no. 1, Jan. 1999, pp 194 – 203. DOI 10.1109/16.737459

  143. Takanashi Y., Fukano H.: Low-frequency noise of InP/InGaAs heterojunction bipolar transistors. IEEE Trans on ED, vol. 45, no. 12, 1998, pp. 2400 – 2406. DOI 10.1109/16.735715

  144. Hou F.C., Bosman J. Simoen E, Vanhellemont J.: Bulk Defect Induced Low-Frequency Noise in n+-p Silicon Diodes. IEEE Trans. on ED, vol. 45, no. 12, Dec. 1998, pp 2528 – 2536. DOI 10.1109/16.735731

  145. Sinnesbichler F.X., Fischer M., Olbrich G.R.: Accurate extraction method for 1/f-noise parameters used in Gummel-Poon type bipolar junction transistor models. 1998 IEEE MTT-S Int. Microwave Symp. Digest, vol. 3, 1998, pp. 1345 – 1348. DOI 10.1109/MWSYM.1998.700623

  146. Martin S., Li G.P., Guan H., D'Souza S., Matloubian M., Claudius G., Compton G.: BSIM3 based RTS and 1/f noise models suitable for circuit simulators. Int. Electron Devices Meeting (IEDM '98) Technical Digest., 1998, pp. 85 – 88. DOI 10.1109/IEDM.1998.746284

  147. Van Heijningen M., Vandamme E., Deferm L., Vandamme L.: Modeling 1/f Noise and Extraction of the Spice Noise Parameters Using a New Extraction Procedure. Proc. of the 28th European Solid-State Device Research Conf., 1998, pp. 468 – 471. DOI 10.1109/ESSDERC.1998.194660

  148. Chung Y.H., Sato K.F., Chan C.W., Lin E.W., Grossman P.C., Tran L.T., Cowles J., Wang H., Oki A.K., Najita K., DeLisio M.P.: 1/f noise modeling of InP HBT-based Schottky diodes for monolithic monolithic millimeter-wave mixers. IEEE MTT-S Int. Microwave Symp. Digest, Vol. 2, 1997, pp. 841 – 844. DOI 10.1109/MWSYM.1997.602928

  149. Kuleshov V.N., Boldyreva T.I.: 1/f AM and PM noise in bipolar transistor amplifiers: sources, ways of influence, techniques of reduction. Proc. of the 1997 IEEE Int. Frequency Control Symp., 1997, pp. 446 – 455. DOI 10.1109/FREQ.1997.638642

  150. Iniguez B., Tambani M., Dessard V., Flandre D.: Unified 1/f noise SOI MOSFET modelling for circuit simulation. Electronics Letters, vol. 33, no. 21, 1997, pp. 1781 – 1782. DOI 10.1049/el:19971196

  151. Ursutiu Doru, Jones Brian K: Low-frequency noise used as a lifetime test of LEDs. Semiconductor Science and Technology, Vol. 11, no. 8, 1996, Article # 1133. https://doi.org/10.1088/0268-1242/11/8/002

  152. Yamada M., Agu M.: A neural-line like chain model generating 1/f noise. Proc. of IEEE Int. Conf. on Evolutionary Computation, 1996, pp. 871 – 873. DOI 10.1109/ICEC.1996.542717

  153. Forbes L., Mun Seork Choi, Yan K.T.: 1/f noise of GaAs resistors on semi-insulating substrates. IEEE Trans on ED, vol. 43, no. 4, 1996, pp. 622 – 627. DOI 10.1109/16.485545

  154. Forbes L.: On the Theory of 1/f Noise in Semi-insulating Materials. IEEE Trans. on ED, Vol. 42, Oct. 1995, pp 1866 – 1868. DOI 10.1109/16.464407

  155. Yan K.T., Forbes L.: 1/f bulk phenomena noise theory for GaAs MESFETs. IEEE Region 10 Int. Conf. on Microelectronics and VLSI, (TENCON '95), 1995, pp. 111 – 114. DOI 10.1109/TENCON.1995.496349

  156. Yan K.T., Forbes L.: Design for and the control of the channel and 1/f noise in GaAs MESFET's. Proc of the 1995 5th Int. Symp. on the Physical and Failure Analysis of Integr. Circuits, 1995, pp. 164 – 168. DOI 10.1109/IPFA.1995.487617

  157. Macfarlane J.C., Ling Hao, Pegrum C.M., Donaldson G.B.: Excess low-frequency noise in YBCO thin-film devices. IEEE Trans on Applied Superconductivity, vol. 5, no. 2, 1995, pp. 2212 – 2215. DOI 10.1109/77.403024

  158. Pehlke D.R., Sailer A., Ho W.-J., Higgins J.A., Smith H., Hebert J., Vineyard M.: A predictive model describing the upconversion of 1/f noise into AM sideband noise in HBTs. 1995 53rd Annual Device Research Conf. Digest, 1995, pp. 94 – 95. DOI 10.1109/DRC.1995.496286

  159. Martinez R.D., Oates D.E., Compton R.C.: Measurement and model for correlating phase and baseband 1/f noise in an FET. IEEE Trans on MTT, vol. 42, no. 11, 1994, pp. 2051 – 2055. DOI 10.1109/22.330118

  160. Hooge F. N.: 1/f Noise Sources. IEEE Trans. on ED, vol. 41, no. 11, Nov. 1994, pp 1926 – 1935. DOI 10.1109/16.333808

  161. Handel P.H.: Fundamental quantum 1/f noise in semiconductor devices. IEEE Trans on ED, vol. 41, no. 11, 1994, pp. 2023 – 2033. DOI 10.1109/16.333820

  162. Handel P.H.: 1/f noise universality in high-technology applications. Proc of the 48th IEEE Int. Frequency Control Symp, 1994., pp. 8 – 21. DOI 10.1109/FREQ.1994.398360

  163. Hanneberger R., Roth B., Beyer A.: Modelling of bias dependent 1/f-noise in GaAs-MESFETs. Third Int. Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits, 1994, pp. 127 – 132. DOI 10.1109/INMMC.1994.512517

  164. Folkes P. A.: Fluctuating deep‐level trap occupancy model for Hooge’s 1/f noise parameter for semiconductor resistors. Applied Physics Letters, vol. 64, no. 4, 1994, pp. 487 – 489. DOI 10.1063/1.111138

  165. Simoen E., Magnusson U., Rotondaro A.L.P.: The kink-related excess low-frequency noise in silicon-on-insulator MOST's. IEEE Trans on ED, vol. 41, no. 3, 1994, pp. 330 – 339. DOI 10.1109/16.275217

  166. Costa J.C., Ngo D., Jackson R., Lovelace D., Camilleri N., Jaffee J.: Modeling and measurement of 1/f noise characteristics of silicon BJTs. IEEE MTT-S Int. Microwave Symp. Digest, vol. 2, 1994, pp. 1073 – 1076. DOI 10.1109/MWSYM.1994.335169

  167. Wolters D.R., Zegers-van Duijnhoven A.T.A., Augur R.: Model for 1/f noise in MOSFETs and interconnects. Technical Digest of Int. Electron Dev. Meeting (IEDM '94), 1994, pp. 177 – 180. DOI 10.1109/IEDM.1994.383436

  168. Schiebel R.A.: A model for 1/f noise in diffusion current based on surface recombination velocity fluctuations and insulator trapping. IEEE Trans. on ED, Vol. 41, no. 5, 1994, pp. 768 – 778. DOI 10.1109/16.285030

  169. Ren L.: Intrinsic and extrinsic 1/f noise sources in proton‐irradiated n‐GaAs epitaxial layers. Journal of Applied Physics, vol. 74, no. 7, 1993, pp. 4534 – 4539. DOI 10.1063/1.355288

  170. Zhu Y.,, Deen M., Kleinpenning T. G. M.: A new 1/f noise model for metal‐oxide‐semiconductor field‐effect transistors in saturation and deep saturation. Journal of Applied Physics, vol. 72, no. 12, 1992, pp. 5990 – 5998. DOI 10.1063/1.351909

  171. Folkes P. A.: Fluctuating deep‐level trap occupancy model for 1/f noise in semiconductor resistors. Journal of Applied Physics, vol. 68, no. 12, 1990, pp. 6279 – 6288. DOI 10.1063/1.346870

  172. Kleinpenning T.G.M.: On 1/f trapping noise in MOSTs. IEEE Trans on ED, vol. 37, no. 9, 1990, pp. 2084 – 2089. DOI 10.1109/16.57173

  173. Decoutere S., Deferm L., Vanhorebeek G., Claeys C., Declerck G.: Identification of 1/f diffusion and recombination noise sources in bipolar transistors. Int. Electron Devices Meeting (IEDM '90) Technical Digest, 1990, pp. 25 – 28. DOI 10.1109/IEDM.1990.237234

  174. Folkes P. A.: Fluctuating deep level trap occupancy model for bulk 1/f noise in field‐effect transistors. Applied Physics Letters, vol. 55, no. 21, 1989, pp. 2217 – 2219. DOI 10.1063/1.102065

  175. Kornfeld A., Altschul V., Shacham-Diamand Y.: Simplified Model of 1/f noise in MOS Transistor Valid in All Regions of Inversion. The Sixteenth Conf. of Electrical and Electronics Eng. in Israel, 1989, pp. 1 – 4. DOI 10.1109/EEIS.1989.720013

  176. Luo M.-Y., Bosman G., Van Der Ziel A., Hench L.L.: Theory and experiments of 1/f noise in Schottky-barrier diodes operating in the thermionic-emission mode. IEEE Trans on ED, vol. 35, no. 8, 1988, pp. 1351 – 1356. DOI 10.1109/16.2558

  177. Van der Ziel A.: Unified Presentation of 1/f Noise in Electronic Devices: Fundamental 1/f Noise Sources. Proc of the IEEE, Vol. 76, No. 3, March 1988, pp 233 – 258. DOI 10.1109/5.4401

  178. Suh C.H.: Carrier number fluctuation model of 1/f noise in a semiconductor device. IEEE Trans on ED, vol. 34, no. 4, 1987, pp. 906 – 910. DOI 10.1109/T-ED.1987.23014

  179. Pawlikiewicz A.H., van der Ziel A.: Location of 1/f noise sources in BJT's—II. Experiment. IEEE Trans on ED, vol. 34, no. 9, 1987, pp. 2009 – 2012. DOI 10.1109/T-ED.1987.23188

  180. Van der Ziel A., Xiaonan Zhang, Pawlikiewicz A.H.: Location of 1/f noise sources in BJT's and HBJT's—I. Theory. IEEE Transactions on ED , vol. 33, no. 9, pp. 1371 – 1376., 1986 DOI 10.1109/T-ED.1986.22672

  181. Loh E.: Interpretation of 1/f noise in phosphorus‐doped polycrystalline silicon films: Hooge’s model of lattice scattering. Journal of Applied Physics, vol. 56, no. 10, 1984, pp. 3022 – 3023. DOI 10.1063/1.333781

  182. Black R. D., Weissman M. B., Restle P. J.: 1/f noise in silicon wafers. J of Applied Physics, Vol. 53, no 9, 1982, pp 6280 – 6284. DOI 10.1063/1.331547

  183. Van der Ziel A., Zijlstra R. J. J., Park H. S.: Discrimination between 1/f noise models in junctions field effect transistors and metal‐oxide‐semiconductor field effect transistors: Numerical results. Journal of Applied Physics, vol. 52, no. 6, 1981, pp. 4300 – 4304. DOI 10.1063/1.329242

  184. Kleinpenning T. G. M., Vandamme L. K. J.: Model for 1/f noise in metal‐oxide‐semiconductor transistors. Journal of Applied Physics, vol. 52, no. 3, 1981, pp. 1594 – 1596. DOI 10.1063/1.329647

  185. Jindal, R. P., van der Ziel A.: Model for mobility fluctuation 1/f noise. Applied Physics Letters, vol. 38, no. 4, 1981, pp. 290 – 291. DOI 10.1063/1.92310

  186. Hooge F.N., Kleinpenning T.G.M., Vandamme L.K.J.: Experimental Studies on 1/f Noise. Rep. Prog. Phys. Vol 44, 1981, pp 481 – 530.

  187. Bliek L.: A Model for 1/f Noise. IEEE Trans. on Instr. and Meas., Vol. IM-30, no. 4, Dec. 1981, pp 307 – 309. ISSN 00189456

  188. Backensto W.V., Viswananathan C.R.: Bias-dependent 1/f noise model of an MOS transistor. IEE Proc. I - Solid-State and Electron Devices, vol. 127, no. 2, 1980, pp. 87 – 93. DOI 10.1049/ip-i-1:19800016

  189. T. Dilmi, A. Chovet, P. Viktorovitch: Influence of a magnetic field on 1/f noise in ambipolar semiconductors: evidence of its surface origin. Journal of Applied Physics, Vol. 50, Aug. 1979, pp. 5348 – 5351. DOI 10.1063/1.326634

  190. Van der Ziel A., Chenette E.R.: Noise in solid state devices. Adv. Electronics Electron Phys., Vol. 46, 1978, p. 313.

  191. Vandamme L.K.J., Groot J.C.F.: 1/f noise and resistance between circular electrodes. Electronics Letters, vol. 14, no. 2, 1978, pp. 30 – 32. DOI 10.1049/el:19780022

  192. Weissman M. B.: A model for 1/f noise from singularities in the fluctuation weighting function. Journal of Applied Physics, vol. 48, no. 4, 1977, pp. 1705 – 1707. DOI 10.1063/1.323857

  193. Van Helvoort G.J.M., Beck H.G.E.: Model for the excitation of 1/f noise by high-frequency A.C. Signals. Electronics Letters, vol. 13, no. 18, 1977, pp. 542 – 544. DOI 10.1049/el:19770390

  194. Hooge F. N.: 1/f Noise. Physica B+C, vol. 83B+C, no. 1, May 1976, pp 14 – 23.

  195. Jones B.K.: 1/f and 1/Δf noise produced by a radio-frequency current in a carbon resistor. Electronics Letters, Vol. 12, no 4, 1976, pp 110 – 111. DOI 10.1049/el:19760086

  196. E. J. P. May, Sellars W. D.: 1/f noise produced by radio-frequency current in resistors. Electronics Letters, vol. 11, no. 22, 1975, pp. 544–545. DOI 10.1049/el:19750417

  197. B. K. Jones and J. D. Francis: Direct correlation between 1/f and other noise sources. J. Phys. D: Appl. Phys., Vol. 8, 1975, pp 1172 – 1176. DOI 10.1088/0022-3727/8/10/003

  198. Backensto W.V., Viswanathan C.R.: An improved 1/f noise model of an MOS transistor. 1975 Int. Electron Devices Meeting, vol. 21, 1975, pp. 469 - 473. DOI 10.1109/IEDM.1975.188925

  199. Hawkins R. J.: Modified Random‐Walk Model for 1/f Noise. Journal of Applied Physics, vol. 43, no. 3, 1972, pp. 1276 – 1277. DOI 10.1063/1.1661251 and 10.1063/1.1661252

  200. Bull C. S., Bozic S. M.: Excess noise in semiconducting devices due to fluctuations in their characteristics when signals are applied. British Journal of Applied Physics, Vol. 18, 1967. DOI 10.1088/0508-3443/18/7/302

  201. Back to top list

     

    Avalanche noise

  1. Kexiu Dong, Dunjun Chen, Yangyi Zhang, Yizhe Sun, Jianping Shi: AlGaN solar blind APD with low breakdown voltage. Opto-Electronic Engineering, Vol. 44, no. 4, 2017, pp. 405 – 409. DOI 10.3969/j.issn.1003-501X.2017.04.004

  2. Alimenti F., Tasselli G., Botteron C., et al.: Avalanche Microwave Noise Sources in Commercial 90-nm CMOS Technology. IEEE Trans on MTT, Vol. 64, no. 5, 2016, pp. 1409 – 1418. DOI 10.1109/TMTT.2016.2549522

  3. Qiao L., Cheong J.S., Ong J.S.L., et al.: Avalanche Noise in Al0.52In0.48P Diodes. IEEE Photonics Technology Lett., Vol. 28, no. 4, 2016, pp. 481 – 484. DOI 10.1109/LPT.2015.2499545

  4. Wu Zhiwei, Guo Jingshu, Li Yuan, et al.: Low-Noise 3-D Avalanche Photodiodes. IEEE Photonics Journal, Vol. 8, no. 4, 2016, Article # 6803710. DOI 10.1109/JPHOT.2016.2578932

  5. Woodson M.E., Ren Min, Maddox S.J., et al.: Low-noise AlInAsSb avalanche photodiode. Applied Physics Lett., Vol. 108, no. 12, 2016, Article # 129901. http://dx.doi.org/10.1063/1.4942372

  6. Alimenti F., Tasselli G., Botteron C., et al.: Avalanche Noise Diodes: a Compact Circuit Model Compatible with Advanced CAD Tools. Int. Conf on Noise and Fluctuations (ICNF), 2015. DOI 10.1109/ICNF.2015.7288564

  7. Christopoulos S.-R.G., Sarlis N.V.: Q-exponential relaxation of the expected avalanche size in the coherent noise model. Physica A - Statistical Mechanics and its Applications, Vol. 438, 2015, pp. 667 – 667. DOI 10.1016/j.physa.2015.06.027

  8. Boso G., Korzh B., Lunghi T., et al.: Low noise InGaAs/InP single-photon negative feedback avalanche diodes: characterization and applications. Conf. on Advanced Photon Counting Techniques IX, Proc. of SPIE, Vol. 9492, 2015, Article # 94920Q. DOI 10.1117/12.2177892

  9. Chang C., Xu J.T., Li X.Y.: Noise Characteristic of AlGaN Based Solar-blind UV Avalanche Photodiodes. 2nd Int. Seminar on High-Power Laser Interaction with Matter and Application / Int. Seminar on Space Surveillance Technology / 2nd Symp. on Combustion Diagnostics. Proc. of SPIE, Vol. 9522, 2015, Article # 952225. DOI 10.1117/12.2180427

  10. Kolb Kimberly: Signal-to-noise ratio of Geiger-mode avalanche photodiode single-photon counting detectors. Optical Engineering, Vol. 53, no. 8, 2014, Article # 081904. DOI 10.1117/1.OE.53.8.081904

  11. Kanazawa Kiyoshi, Sagawa Takahiro, Hayakawa Hisao: Energy pumping in electrical circuits under avalanche noise. Physical Review E, Vol. 90, no. 1, 2014, Article # 012115. DOI 10.1103/PhysRevE.90.012115

  12. Chie-In Lee, Wei-Cheng Lin, Yan-Ting Lin: A New Method to Determine Avalanche Multiplication Factor Using Vector Network Analyzer for p-n Junctions. IEEE Microwave & Wireless Comp. Lett., Vol. 24, no. 9, 2014, pp. 646 – 648. DOI 10.1109/LMWC.2014.2330500

  13. Craig A.P., Reyner C.J., Marshall A.R.J., Huffaker D.L.: Excess Noise in GaAs and AlGaAs Avalanche Photodiodes with GaSb Absorption Regions-Composite Structures Grown Using Interfacial Misfit Arrays. Applied Physics Letters, Vol. 104, no. 21, 2014, Article # 213502. DOI 10.1063/1.4879848

  14. Akbari M.H., Jalali M.: Noise Equivalent Circuit Model of Thin Avalanche Photodiodes. IEEE ED Lett., Vol. 35, no. 6, 2014, pp. 648 – 650. DOI 10.1109/LED.2014.2319207

  15. Pancheri L., Dalla Betta G.-F., Stoppa D.: Low-Noise Avalanche Photodiode With Graded Junction in 0.15-mu m CMOS Technology. IEEE ED Lett., Vol. 35, no. 5, 2014, pp. 566 – 568. DOI 10.1109/LED.2014.2312751

  16. Rubel O., Darbandi A.: First-Principle Prediction of Single-carrier Avalanche Multiplication in Chalcopyrite Semiconductors. Journal of Applied Physics, Vol. 113, no. 20, 2013, pp 203104.1 – 203104.7. DOI 10.1063/1.4807650

  17. Scarcella C., Tosi A., Villa F., Tisa S., Zappa F.: Low-Noise Low-Jitter 32-pixels CMOS Single-Photon Avalanche Diodes Array for Single-Photon Counting from 300 nm to 900 nm. Review of Scientific Instruments, Vol. 84, no. 2, 2013, pp. 123112.1 – 123112.5. DOI 10.1063/1.4850677

  18. Vilella E., Dieguez A.: Readout Schemes for Low Noise Single-Photon Avalanche Diodes Fabricated in Conventional HV-CMOS Technologies. Microelectronics J., Vol. 44, no. 10, Special no. SI, 2013, pp. 941 – 947. DOI 10.1016/j.mejo.2013.01.008

  19. Lee K., Lee B., Yoon S., Hong J.-ho, Yang K.: A Low Noise Planar-Type Avalanche Photodiode Using a Single-Diffusion Process in Geiger-Mode Operation. Japanese Journal of Applied Physics, Vol. 52, no. 7, 2013, Article # UNSP 072201, Part: 1. DOI 10.7567/JJAP.52.072201

  20. Huang Jun, Banerjee K., Ghosh S., Hayat M.: Dual-Carrier High-Gain Low-Noise Superlattice Avalanche Photodiodes. IEEE Trans on ED, Vol. 60, no. 7, 2013, pp. 2296 – 2301. DOI 10.1109/TED.2013.2264315

  21. Hsu Fang-Ze, Wu Jau-Yang, Lin Sheng-Di: Low-Noise Single-Photon Avalanche Diodes in 0.25 mu m High-Voltage CMOS Technology. Optics Lett., Vol. 38, no. 1, 2013, pp. 55 – 57.

  22. Dandin M., Abshire P.: High Signal-to-Noise Ratio Avalanche Photodiodes With Perimeter Field Gate and Active Readout. IEEE ED Lett., Vol. 33, no. 4, 2012, pp. 570 – 572. DOI 10.1109/LED.2012.2186112

  23. Tan Chee Hing, Xie Shiyu, Xie Jingjing: Low Noise Avalanche Photodiodes Incorporating a 40 nm AlAsSb Avalanche Region. IEEE Journal of Quantum Electronics, Vol. 48, no. 1, 2012, pp. 36 – 41. DOI 10.1109/JQE.2011.2176105

  24. Yang Yongfeng, Wu Yibao, Farrell R., Dokhale P. A ., Shah K.S. , Cherry S.R.: Signal and Noise Properties of Position-Sensitive Avalanche Photodiodes. Physics in Medicine and Biology, Vol. 56, no. 19, 2011, pp. 6327 – 6336. DOI 10.1088/0031-9155/56/19/011

  25. Marshall A.R.J., Vines P., Ker Pin Jern, David J.P.R, Tan Chee Hing: Avalanche Multiplication and Excess Noise in InAs Electron Avalanche Photodiodes at 77 K. IEEE Journal of Quantum Electronics, Vol. 47, no. 6, 2011, pp. 858 – 864. DOI 10.1109/JQE.2011.2128299

  26. Namekata N, Adachi S, Inoue S.: Ultra-Low-Noise Sinusoidally Gated Avalanche Photodiode for High-Speed Single-Photon Detection at Telecommunication Wavelengths. IEEE Photonics Technology Letters, Vol. 22, no 8, 2010, pp 529 – 531. DOI 10.1109/LPT.2010.2042054

  27. Pan A., Pan Dee-Son, Chui Chi On: Mechanism for excess noise in mixed tunneling and avalanche breakdown of silicon. Applied Physics Letters, Vol. 96, no 26, 2010, pp 263503 – 263503-3. DOI 10.1063/1.3457468

  28. Khunkhao S, Umjaruan C, Thaworn A, Nuanloy S, Niemcharoen S, Ruangphanit A, Phongphanchanthra N, Sato K.: Shot noise behavior of planar Mo/n-Si/Mo photodetector structure in avalanche mode. 2010 Int. Conf. on Electrical Eng. / Electronics Computer Telecom. & Information Technology (ECTI-CON), 2010, pp 1137 – 1141. Print ISBN: 978-1-4244-5606-2

  29. J. S. Marsland: Resonance effects on gain and noise in avalanche photodiodes. J Mater Sci: Mater Electron, Vol 20, 2009, pp S514–S518. http://www.springerlink.com/content/r606114wq43223rl/

  30. Mun S. C. Liew Tat, Tan C.H, Goh Y.L, Marshall A.R.J, David J.P.R.: Modeling of avalanche multiplication and excess noise factor in In0.52Al0.48As avalanche photodiodes using a simple Monte Carlo model. Journal of Applied Physics, Vol. 104, no 1, 2008, pp 013114 – 013114-6. DOI 10.1063/1.2952003

  31. You A.H, Tan S.L, Lim T.L, Cheang P.L.: Multiplication gain and excess noise factor in double heterojunction avalanche photodiodes. IEEE Int. Conf. on Semiconductor Electronics (ICSE 2008), 2008, pp 259 – 262. DOI 10.1109/SMELEC.2008.4770319

  32. Tan L.J.J, Ng J.S, Tan C.H, David J.P.R.: Avalanche Noise Characteristics in Submicron InP Diodes. IEEE Journal of Quantum Electronics, Vol. 44, no 4, 2008, pp 378 – 382. DOI 10.1109/JQE.2007.914771

  33. Celasco E., Celasco M., Eggenhoffner R.: Crackling noise peaks as signature of avalanche correlation. Journal of Applied Physics, Vol. 101, no 5, 2007, pp 054908 – 054908-5. DOI 10.1063/1.2472654

  34. Tan C.H, Goh Y.L, Marshall A.R.J, Tan L.J.J, Ng J.S, David J.P.R.: Extremely low excess noise InAlAs avalanche photodiodes. IEEE 19th Int. Conf. on Indium Phosphide & Related Materials (IPRM '07), 2007, pp 81 – 83. DOI 10.1109/ICIPRM.2007.381127

  35. You A.H, Low L.C, Cheang P.L.: Avalanche Multiplication and Excess Noise Factor of Heterojunction Avalanche Photodiodes. IEEE Int. Conf. on Semiconductor Electronics (ICSE '06), 2006, pp 324 – 328. DOI 10.1109/SMELEC.2006.381074

  36. Groves C, Chia C.K, Tozer R.C, David J.P.R, Rees G.J.: Avalanche noise characteristics of single AlxGa1-xAs(0.3<0.6)-GaAs heterojunction APDs. IEEE Journal of Quantum Electronics, Vol. 41, no 1, 2005, pp 70 – 75. DOI 10.1109/JQE.2004.838530(410) 41

  37. Reklaitis A., Reggiani L.: Monte Carlo investigation of current voltage and avalanche noise in GaN double-drift impact diodes. Journal of Applied Physics, Vol. 97, no 4, 2005, pp 043709 – 043709-8. DOI 10.1063/1.1853498

  38. Goh Y.L, Tan C.H, Ng J.S, Ng W.K, David J.P.R.: Avalanche noise in In0.53Ga0.47As avalanching regions. Int. Conf. on Indium Phosphide and Related Materials, 2005, pp 428 – 431. DOI 10.1109/ICIPRM.2005.1517521

  39. Paasschens J.C.J, de Kort R.: Modelling the excess noise due to avalanche multiplication in (hetero-junction) bipolar transistors. Proc. of the 2004 Meeting Bipolar/BiCMOS Circuits & Technology, 2004, pp 108 – 111. DOI 10.1109/BIPOL.2004.1365757

  40. Groves C, David J. P. R, Rees G. J, Ong D. S.: Modeling of avalanche multiplication and noise in heterojunction avalanche photodiodes. Journal of Applied Physics, Vol. 95, no 11, 2004, pp 6245 – 6251. DOI 10.1063/1.1719269

  41. Schneider H.: Theory of avalanche multiplication and excess noise in quantum-well infrared photodetectors. Applied Physics Letters, Vol. 82, no 24, 2003, pp 4376 – 4378. DOI 10.1063/1.1585134

  42. David J.: Low noise avalanche photodiodes. Optical Fiber Comm. Conf. (OFC 2003), Vol. 1, 2003, pp 336 – 337. DOI 10.1109/OFC.2003.1248112

  43. Ng B.K, Yan F, David J.P.R, Tozer R.C, Rees G.J, Qin C, Zhao J.H.: Multiplication and excess noise characteristics of thin 4H-SiC UV avalanche photodiodes. IEEE Photonics Technology Letters, Vol. 14, no 9, 2002, pp 1342 – 1344. DOI 10.1109/LPT.2002.801112

  44. Satyanadh G, Joshi R. P, Abedin N, Singh U.: Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs. Journal of Applied Physics, Vol. 91, no 3, 2002, pp 1331 – 1338. DOI 10.1063/1.1429771

  45. Marinov O., Deen M. J., Loukanov V., Velikov V.: Low frequency noise of reverse biased rectifier diodes in the avalanche breakdown regime. Journal of Applied Physics, vol. 91, no. 11, 2002, pp. 9232 – 9240. DOI 10.1063/1.1470252

  46. Neng-Fu Shih: Excess noise analysis of separate absorption multiplication region superlattice avalanche photodiodes. Trans. on ED, Vol. 48, no 6, 2001, pp 1075 – 1081. DOI 10.1109/16.925229

  47. Saleh M.A, Hayat M.M, Sotirelis P.P, Holmes A.L, Campbell J.C, Saleh B.E.A, Teich M.C.: Impact-ionization and noise characteristics of thin III-V avalanche photodiodes. Trans. on ED, Vol. 48, no 12, 2001, pp 2722 – 2731. DOI 10.1109/16.974696

  48. David J.P.R, Rees G.J.: Low noise avalanche photodiodes. The 14th Annual Meeting of IEEE Lasers and Electro-Optics Society (LEOS 2001), Vol. 2, 2001, pp 693 – 694. DOI 10.1109/LEOS.2001.969003

  49. Li K.F., Ong D., David J., Tozer R., Rees G., Plimmer S.A.; Chang K.Y.; Roberts J.S.: Avalanche Noise Characteristics of Thin GaAs Structures with Distributed Carrier Concentration. IEEE Trans on ED, vol. 47, no. 5, 2000, pp 910 – 914. DOI 10.1109/16.841220

  50. Ng B.K, David J.P.R, Tozer R.C, Rees G.J, Tan C.H, Plimmer S.A, Hopkinson M.: Low avalanche noise behaviour in bulk Al0.8Ga0.2 As. IEEE Int. Symp. on Compound Semiconductors, 2000, pp 519 – 523. DOI 10.1109/ISCS.2000.947209

  51. Tan C. H, Clark J. C, David J. P. R, Rees G. J, Plimmer S. A, Tozer R. C, Herbert D. C, Robbins D. J, Leong W. Y, Newey J.: Avalanche noise measurement in thin Si p+-i-n+ diodes. Applied Physics Letters, Vol. 76, no 26, 2000, pp 3926 – 3928. DOI 10.1063/1.126823

  52. Li K.F, Ong D.S, David J.P.R, Tozer R.C, Rees G.J, Plimmer S.A, Chang K.Y, Roberts J.S.: Avalanche noise characteristics of thin GaAs structures with distributed carrier generation [APDs]. Trans. on ED, Vol. 47, no 5, pp 910 – 914., 2000 DOI 10.1109/16.841220

  53. Li K.F, Ong D.S, David J.P.R, Tozer R.C, Rees G.J, Robson P.N, Grey R.: Low noise GaAs and Al0.3Ga0.7As avalanche photodetectors. IEE Proc. J - Optoelectronics, Vol. 146, no 1, 1999, pp 21 – 24. DOI 10.1049/ip-opt:19990453

  54. Plimmer S. A, Tan C. H, David J. P. R, Grey R, Li K. F, Rees G. J.: The effect of an electric-field gradient on avalanche noise. Applied Physics Letters, Vol. 75, no 19, 1999, pp 2963 – 2965. DOI 10.1063/1.125202

  55. Tan C.H, Plimmer S.A, David J.P.R, Rees G.J, Tozer R.C, Clark J, Grey R.: Electric field gradient dependence of excess avalanche noise. 1999 Symp. on High Performance Electron Devices for Microwave and Optoelectronic App. (EDMO), 1999, pp 230 – 235. DOI 10.1109/EDMO.1999.821490

  56. Li K.F, Plimmer S.A, David J.P.R, Tozer R.C, Rees G.J, Robson P.N, Button C.C, Clark J.C.: Low avalanche noise characteristics in thin InP p+-i-n + diodes with electron initiated multiplication. IEEE Photonics Technology Letters, Vol. 11, no 3, 1999, pp 364 – 366. DOI 10.1109/68.748237

  57. Li K.F, Ong D.S, David J.P.R, Tozer R.C, Rees G.J, Robson P.N, Grey R.: Low excess noise characteristics in thin avalanche region GaAs diodes. Electronics Letters, Vol. 34, no 1, 1998, pp 125 – 126. DOI 10.1049/el:19980021

  58. Li K.F, Ong D.S, David J.P.R, Rees G.J, Tozer R.C, Robson P.N, Grey R.: Avalanche multiplication noise characteristics in thin GaAs p+-i-n+ diodes. Trans. on ED, Vol. 45, no 10, 1998, pp 2102 – 2107. DOI 10.1109/16.725242

  59. Ong D. S, Li K. F, Rees G. J, David J. P. R, Robson P. N, Dunn G. M.: Monte Carlo estimation of avalanche noise in thin p+-i-n+ GaAs diodes. Applied Physics Letters, Vol. 72, no 2, 1998, pp 232 – 234. DOI 10.1063/1.120695

  60. Ong D. S, Li K. F, Rees G. J, David J. P. R, Robson P. N.: A simple model to determine multiplication and noise in avalanche photodiodes. Journal of Applied Physics, Vol. 83, no 6, 1998, pp 3426 – 3428. DOI 10.1063/1.367111

  61. Kim Jungsang, Yamamoto Yoshihisa, Hogue H. H.: Noise-free avalanche multiplication in Si solid state photomultipliers. Applied Physics Letters, Vol. 70, no 21, 1997, pp 2852 – 2854. DOI 10.1063/1.119022

  62. Herbert D.C.: Avalanche noise in submicrometre pin diodes. Electronics Letters, Vol. 33, no 14, 1997, pp 1257 – 1258. DOI 10.1049/el:19970828

  63. Hu C, Anselm K.A, Streetman B.G, Campbell J.C.: Noise characteristics of thin multiplication region GaAs avalanche photodiodes. Applied Physics Letters, Vol. 69, no 24, 1996, pp 3734 – 3736. DOI 10.1063/1.117205

  64. Chakrabarti P, Chowdhury S.C, Pal B.B.: Noise characteristics of a new heterojunction avalanche photodiode. IEE Proc. J - Optoelectronics, Vol. 137, no 2, 1990, pp 97 – 100. ISSN : 0267-3932

  65. Marsland J. S.: On the effect of ionization dead spaces on avalanche multiplication and noise for uniform electric fields. Journal of Applied Physics, Vol. 67, no 4, 1990, pp 1929 – 1933. DOI 10.1063/1.345596

  66. Peransin J.M, Rigaud D, Alabedra R.: Avalanche noise associated with gate current of Si JFET. Electronics Letters, Vol. 23, no 18, 1987, pp 970 – 971. DOI 10.1049/el:19870682

  67. Teich M, Matsuo K, Saleh B.: Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes. IEEE J. of Quantum Electronics, Vol. 22, no 8, 1986, pp 1184 – 1193. DOI 10.1109/JQE.1986.1073137

  68. Brain M.C.: Absolute noise characterisation of avalanche photodiodes. Electronics Letters, Vol. 14, no 15, 1978, pp 485 – 487. DOI 10.1049/el:19780326

  69. Nishida Katsuhiko: Avalanche-noise dependence on avalanche-photodiode structures. Electronics Letters, Vol. 13, no 14, 1977, pp 419 – 421. DOI 10.1049/el:19770305

  70. Tsironis C, Beneking H.: Avalanche noise in GaAs MESFETs. Electronics Letters, Vol. 13, no 15, 1977, pp 438 – 439. DOI 10.1049/el:19770317

  71. Statz H, Pucel R.A, Simpson J.E, Haus H.A.: Noise in gallium arsenide avalanche Read diodes. Trans. on ED, Vol. 23, no 9, 1976, pp 1075 – 1085. DOI 10.1109/T-ED.1976.18539

  72. Vlaardingerbroek M.T.: On the signal dependence of avalanche noise generation. Trans. on ED, Vol. 22, no 6, 1975, pp 309 – 313. DOI 10.1109/T-ED.1975.18128

  73. Giblin R.A, Scherer E.F, Wierich R.L.: Computer simulation of instability and noise in high-power avalanche devices. Trans on ED, Vol. 20, no 4, 1973, pp 404 – 418. DOI 10.1109/T-ED.1973.17663

  74. Naqvi I.M.: Experimental observation of the dependence of avalanche noise on carrier ionization coefficients. Proc. of the IEEE, Vol. 60, no 12, 1972, pp 1555 – 1556. DOI 10.1109/PROC.1972.8956

  75. Wierich R.L.: Computer simulation of avalanche noise. Electronics Letters, Vol. 8, no 3, 1972, pp 58 – 59. DOI 10.1049/el:19720042

  76. Haitz R. H, Voltmer F. W.: Noise of a Self‐Sustaining Avalanche Discharge in Silicon: Studies at Microwave Frequencies. Journal of Applied Physics, Vol. 39, no 7, 1968, pp 3379 – 3384. DOI 10.1063/1.1656784

  77. Gummel H.K, Blue J.L.: A small-signal theory of avalanche noise in IMPATT diodes. Trans on ED, Vol. 14, no 9, 1967, pp 569 – 580. DOI 10.1109/T-ED.1967.16005

  78. Haitz R. H.: Noise of a Self‐Sustaining Avalanche Discharge in Silicon: Low‐Frequency Noise Studies. Journal of Applied Physics, Vol. 38, no 7, 1967, pp 2935 – 2946. DOI 10.1063/1.1710027

  79. Haitz R. H, Voltmer F. W.: Noise Studies in Uniform Avalanche Diodes. Applied Physics Letters, Vol. 9, no 10, 1966, pp 381 – 383. DOI 10.1063/1.1754620

    Back to top list

     

    Barkhausen noise

  1. Meyn Jan-Peter: Demonstrating the Barkhausen effect with high signal-to-noise ratio. European Journal of Physics, Vol. 38, no. 4, 2017, Article # 045502. DOI 10.1088/1361-6404/aa6e30

  2. Lasaosa A., Gurruchaga K., Arizti F., Martinez-De-Guerenu A.: Induction Hardened Layer Characterization and Grinding Burn Detection by Magnetic Barkhausen Noise Analysis. J. of Nondestructive Evaluation, Vol. 36, no. 2, 2017, Article # 27. DOI 10.1007/s10921-016-0388-y

  3. Kolarik K., Simecek J., Kriz A., Capek J.: Using the Barkhausen-Noise Analysis and Metal-Magnetic-Memory Method for Material Characteristics under Fatigue Damage. Materiali in Tehnologije, Vol. 51, no. 3, 2017, pp. 437 – 441. DOI 10.17222/mit.2016.056

  4. Micietova A., Neslusan M., Cep R., et al.: Detection of Grinding Burn Through the High and Low Frequency Barkhausen Noise. Tehnicki Vjesnik - Technical Gazette, Vol. 24, Supplement 1, 2017, pp. 71 – 77. DOI 10.17559/TV-20140203083223

  5. Neslusan M., Cizek J., Kolarik K., et al.: Monitoring of grinding burn via Barkhausen noise emission in case-hardened steel in large-bearing production. J. of Materials Processing Technology, Vol. 240, 2017, pp. 104 – 117. DOI 10.1016/j.jmatprotec.2016.09.015

  6. Neslusan M., Zgutova K., Kolarik K., et al.: Analysis of Structure Transformations in Rail Surface Induced by Plastic Deformation via Barkhausen Noise Emission. Acta Physica Polonica A, Vol. 131, no. 4, Part: 2, 2017, pp. 1099 – 1101. DOI 10.12693/APhysPolA.131.1099

  7. Neyra A., Miriam Rocio, Lopez Pumarega M.I., Marcelo Nunez N., et al.: Magnetic Barkhausen noise and magneto acoustic emission in pressure vessel steel. J. of Magnetism & Magnetic Materials, Vol. 426, 2017, pp. 779 – 784. DOI 10.1016/j.jmmm.2016.10.115

  8. Ding Song, Tian GuiYun, Dobmann G., et al.: Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination. J. of Magnetism & Magnetic Materials, Vol. 421, 2017, pp. 225 – 229. DOI 10.1016/j.jmmm.2016.08.030

  9. Jin Tan, Yi Jun, Peng Siwei: Determination of burn thresholds of precision gears in form grinding based on complex thermal modelling and Barkhausen noise measurements. Int. J. of Advanced Manufacturing Technology, Vol. 88, no. 1-4, 2017, pp. 789 – 800. DOI 10.1007/s00170-016-8815-x

  10. Samimi A.A., Krause T.W., Clapham L.: Multi-parameter Evaluation of Magnetic Barkhausen Noise in Carbon Steel. J. of Nondestructive Evaluation, Vol. 35, no. 3, 2016, Article # 40. DOI 10.1007/s10921-016-0358-4

  11. Stupakov A., Perevertov O., Zablotskii V.: A System for Controllable Magnetic Measurements of Hysteresis and Barkhausen Noise. IEEE Trans on Instr. & Meas., Vol. 65, no. 5, 2016, pp. 1087 – 1097. DOI 10.1109/TIM.2015.2494621

  12. Stupakov A., Neslusan M., Perevertov O.: Detection of a milling-induced surface damage by the magnetic Barkhausen noise. J. of Magnetism & Magnetic Materials, Vol. 410, 2016, pp. 198 – 209. DOI 10.1016/j.jmmm.2016.03.036

  13. Tadic Bosiljka: Multifractal analysis of Barkhausen noise reveals the dynamic nature of criticality at hysteresis loop. J. of Statistical Mechanics - Theory & Experiment, 2016, Article # 063305. DOI 10.1088/1742-5468/2016/06/063305

  14. Pala Jozef, Usak E.: New parameters in adaptive testing of ferromagnetic materials utilizing magnetic Barkhausen noise. J. of Magnetism & Magnetic Materials, Vol. 402, 2016, pp. 172 – 177. DOI 10.1016/j.jmmm.2015.11.064

  15. Moorthy V.: Important Factors Influencing the Magnetic Barkhausen Noise Profile. IEEE Trans on Magnetics, Vol. 52, no. 4, 2016, Article # 6200713. DOI 10.1109/TMAG.2015.2502222

  16. Blazek D., Neslusan M., Micica M., Pistora J.: Extraction of Barkhausen noise from the measured raw signal in high-frequency regimes. Measurement, Vol. 94, 2016, pp. 456 – 463. DOI 10.1016/j.measurement.2016.08.022

  17. Durin G., Bohn F., Correa M.A., et al.: Quantitative Scaling of Magnetic Avalanches. Physical Review Lett., Vol. 117, no. 8, 2016, Article # 087201. DOI 10.1103/PhysRevLett.117.087201

  18. Li Liang, Luo Xiaoyu: Monte Carlo simulation for relationship between magnetic Barkhausen noise and elastic stress of steel. Advances in Mechanical Engineering, Vol. 8, no. 7, 2016, Article # 1687814016656536. DOI 10.1177/1687814016656536

  19. Ahmadzade-Beiraki E., Mazinani M., Kashefi M.: Examination of Barkhausen noise parameters for characterisation of strain-induced martensitic transformation in AISI 304 stainless steel. Insight, Vol. 58, no. 6, 2016, pp. 297 – 301. ISSN: 1354-2575

  20. Kypris O., Nlebedim I.C., Jiles D.C.: Measuring stress variation with depth using Barkhausen signals. J. of Magnetism & Magnetic Materials, Vol. 407, 2016, pp. 377 – 395. DOI 10.1016/j.jmmm.2016.01.072

  21. Martinez-Ortiz P., Perez-Benitez J.A., Espina-Hernandez J.H., al et.: Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels. J. of Magnetism & Magnetic Materials, Vol. 401, 2016, pp. 108 – 115. DOI 10.1016/j.jmmm.2015.10.036

  22. Miesowicz K., Staszewski W.J., Korbiel T.: Analysis of Barkhausen noise using wavelet-based fractal signal processing for fatigue crack detection. Int. J. of Fatigue, Vol. 83, Part 2, 2016, pp. 109 – 116. DOI 10.1016/j.ijfatigue.2015.10.002

  23. Stupakov A., Perevertov O., Neslusan M.: Magnetic Barkhausen Noise at Different Magnetization Conditions. J. of Electrical Engineering - Elektrotechnicky casopis, Vol. 66, no. 7, Special Issue: SI, 2015, pp. 10 – 13. ISSN: 1335-3632

  24. Pala J., Soka M., Usakova M.: Effect of Rare-Earth Substitution on Magnetic Barkhausen Noise of Nickel Zinc Ferrites. J. of Electrical Engineering - Elektrotechnicky casopis, Vol. 66, no. 7, Special Issue: SI, 2015, pp. 94 – 97. ISSN: 1335-3632

  25. Shu Di, Guo Lei, Yin Liang, et al.: The effect of stress and incentive magnetic field on the average volume of magnetic Barkhausen jump in iron. J. of Magnetism & Magnetic Materials, Vol. 394, 2015, pp. 195 – 199. DOI 10.1016/j.jmmm.2015.06.059

  26. Vashista M., Moorthy V.: On the shape of the magnetic Barkhausen noise profile for better revelation of the effect of microstructures on the magnetisation process in ferritic steels. J. of Magnetism & Magnetic Materials, Vol. 393, 2015, pp. 584 – 592. DOI 10.1016/j.jmmm.2015.06.008

  27. Ding Song, Tian Gui Yun, Moorthy V., et al.: New feature extraction for applied stress detection on ferromagnetic material using magnetic Barkhausen noise. Measurement, Vol. 73, 2015, pp. 515 – 519. DOI 10.1016/j.measurement.2015.05.031

  28. Xu J., Silevitch D.M., Dahmen K.A., Rosenbaum T.F: Barkhausen noise in the random field Ising magnet Nd2Fe14B. Physical Review B, Vol. 92, no. 2, 2015, Article # 024424. DOI 10.1103/PhysRevB.92.024424

  29. Harrison R.G.: Accurate mean-field modeling of the Barkhausen noise power in ferromagnetic materials, using a positive-feedback theory of ferromagnetism. J. of Applied Physics, Vol. 118, no. 2, 2015, Article # 023904. DOI 10.1063/1.4926474

  30. Li Yi, Xu Ben, Hu Shenyang, et al.: Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of alpha-iron containing nonmagnetic particles. AIP Advances, Vol. 5, no. 7, 2015, Article # 077168. DOI 10.1063/1.4927548

  31. Vourna P., Ktena A., Tsakiridis P.E., Hristoforou E: An accurate evaluation of the residual stress of welded electrical steels with magnetic Barkhausen noise. Measurement, Vol. 71, 2015, pp. 31 – 45. DOI 10.1016/j.measurement.2015.04.007

  32. Luo Xiaoyu, Wang Yilin, Zhu Bin, et al.: Super-resolution spectral analysis and signal reconstruction of magnetic Barkhausen noise. NDT & E International, Vol. 70, 2015, pp. 16 – 21. DOI 10.1016/j.ndteint.2014.12.002

  33. Martinez-Ortiz P., Perez-Benitez J.A., Espina-Hernandez J.H., et al.: On the estimation of the magnetic easy axis in pipeline steels using magnetic Barkhausen noise. J. of Magnetism & Magnetic Materials, Vol. 374, 2015, pp. 67 – 74. DOI 10.1016/j.jmmm.2014.07.068

  34. Prabhu Gaunkar N.G., Nlebedim I.C., Prabhu Gaunkar G.V., Jiles D.C.: Examining the Correlation Between Microstructure and Barkhausen Noise Activity for Ferromagnetic Materials. IEEE Trans on Magnetics, Vol. 51, no. 11, 2015, pp. 1 – 4. DOI 10.1109/TMAG.2015.2447833

  35. Stupakov A., Perevertov O., Zablotskii V.: Dynamical Properties of Magnetic Barkhausen Noise in a Soft Microalloyed Steel. IEEE Trans on Magnetics, Vol. 51, no. 1, 2015, pp. 1 – 4. DOI 10.1109/TMAG.2014.2352859

  36. Dubey A.K., Hentschel H.G.E., Jaiswal Prabhat K., et al.: Modeling Barkhausen Noise in magnetic glasses with dipole-dipole interactions. EPL, Vol. 112, no. 1, 2015, Article # 17011. DOI 10.1209/0295-5075/112/17011

  37. Gaunkar N.P., Kypris O., Nlebedim I.C., Jiles D.C.: Analysis of Barkhausen Noise Emissions and Magnetic Hysteresis in Multi-Phase Magnetic Materials. IEEE Trans on Magnetics, Vol. 50, no. 11, 2014, pp. 1 – 4. DOI 10.1109/TMAG.2014.2335204

  38. Balk A.L., Stiles M.D., Unguris J.: Critical behavior of zero-field magnetic fluctuations in perpendicularly magnetized thin films. Physical Review B, Vol. 90, no. 18, 2014, Article # 184404. DOI 10.1103/PhysRevB.90.184404

  39. Obata Shuji: Computer Simulations on Barkhausen Effects and Magnetizations in Fe Nano-Structure Systems. Materials Transactions, Vol. 55, no. 10, 2014, pp. 1591 – 1598. DOI 10.2320/matertrans.M2014161

  40. Bohn F., Correa M.A., Carara M., et al.: Statistical properties of Barkhausen noise in amorphous ferromagnetic films. Physical Review E, Vol. 90, no. 3, 2014, Article # UNSP 032821. DOI 10.1103/PhysRevE.90.032821

  41. Daroczi L., Eszenyi G., Molnar Zs., et al.: Effect of Excitation Parameters on the Barkhausen-Noise in FINEMET-Type Amorphous Ribbons. Materials Transactions, Vol. 55, no. 8, 2014, pp. 1237 – 1242. DOI 10.2320/matertrans.M2013458

  42. Hentschel H.G.E., Iliyn V., Procaccia I., et al.: Barkhausen noise in metallic glasses with strong local anisotropy: model and theory. J. of Statistical Mechanics - Theory & Experiment, 2014, Article # P08020. DOI 10.1088/1742-5468/2014/08/P08020

  43. Laurson L., Durin G., Zapperi S.: Universality classes and crossover scaling of Barkhausen noise in thin films. Physical Review B, Vol. 89, no. 10, 2014, Article # 104402. DOI 10.1103/PhysRevB.89.104402

  44. Kypris O., Nlebedim I.C., Jiles D.C.: A model for the Barkhausen frequency spectrum as a function of applied stress. J. of Applied Physics, Vol. 115, no. 8, 2014, Article # 083906. DOI 10.1063/1.4866195

  45. Ktena A., Hristoforou E., Gerhardt G.J.L., et al.: Barkhausen noise as a microstructure characterization tool. Physica B - Condensed Matter, Vol. 435, 2014, pp. 109 – 112. DOI 10.1016/j.physb.2013.09.027

  46. Stupakov O.: Stabilization of Barkhausen noise readings by controlling a surface field waveform. Measurement Science & Technology, Vol. 25, no. 1, 2014, Article # 015604. DOI 10.1088/0957-0233/25/1/015604

  47. Salje E.K.H., Dahmen K.A.: Crackling Noise in Disordered Materials. Edited by: Langer, Book Series: Annual Review of Condensed Matter Physics, Vol. 5, 2014, pp. 233 – 254. DOI 10.1146/annurev-conmatphys-031113-133838

  48. Jozef Paľa, Jan Bydžovsk: An Alternative Method to Remove Excitation Field Interference from Magnetic Barkhause Noise. Journal of Magnetism and Magnetic Materials, Vol. 361, 2014, pp. 88 – 93. DOI 10.1016/j.jmmm.2014.02.093

  49. Blaow M.M., Shaw B.A.: Magnetic Barkhausen Noise Profile Analysis: Effect of Excitation Field Strength and Detection Coil Sensitivity in Case Carburized Steel. Materials Science and Appl., Vol. 5, 2014, pp. 258 – 266. DOI 10.4236/msa.2014.55030

  50. Zerovnik P., Fefer D., Grum J.: Surface Integrity Characterization Based on Time-Delay of the Magnetic Barkhausen Noise Voltage Signal. Strojniski Vestnik-Journal of Mechanical Eng., Vol. 60, no. 1, 2014, pp. 21 – 28. http://www.sv-jme.eu/data/upload/2014/01/03_2012_906_Zerovnik_02.pdf

  51. Drehmer A., Gunther G., Missell F.P.: Case Depth in SAE Steel Using Barkhausen Noise. Materials Research, Vol. 16, no. 5, 2013, pp. 1015 – 1019. http://dx.doi.org/10.1590/S1516-14392013005000095

  52. Ping Wang, Lei Zhu, Qiujun Zhu, Xiaoli Ji, Haitao Wang, Guiyun Tian, Entao Yao:
    An Application of Back Propagation Neural Network for the Steel Stress Detection Based on Barkhausen Noise Theory. NDT & E International, Vol. 55, 2013, pp. 9 – 14. DOI 10.1016/j.ndteint.2013.01.007

  53. Khan S., Cohen D.: Note: Magnetic noise from the inner wall of a magnetically shielded room.  Review of Scientific Instruments, Vol. 84, no. 5, 2013, pp. 056101-1 056101-3. DOI 10.1063/1.4802845

  54. Pal'a J., Bydzovsky J., Stoyka V., Kovac F.: Stabilization of the Barkhausen Noise Parameters. IEEE Trans on Magnetics, vol. 46, no. 2, 2010, pp. 207 – 209. DOI 10.1109/TMAG.2009.2034019

  55. Bukki-Deme A., Szabo I.A.: Magnetization Rate Dependence of the Barkhausen Noise in JRQ Steels. IEEE Trans on Magnetics, vol. 46, no. 2, 2010, pp. 254 – 257. DOI 10.1109/TMAG.2009.2032147

  56. Stupakov O., Perevertov O., Stoyka V., Wood R.: Correlation Between Hysteresis and Barkhausen Noise Parameters of Electrical Steels. IEEE Trans on Magnetics, vol. 46, no. 2, pp. 517 – 520., 2010 DOI 10.1109/TMAG.2009.2030415

  57. Baiotto R., Gerhardt G., Fukuhara M., Yonamine T., Missell F.P.: Barkhausen Noise and Magnetic Properties of Plastically Deformed Silicon Steels. IEEE Trans on Magnetics, vol. 46, no. 2, 2010, pp. 294 – 297. DOI 10.1109/TMAG.2009.2032859

  58. Hoon Song, Park D.G., Cho N.Z.: Barkhausen Noise in Ion Implanted Amorphous Ribbon. IEEE Trans on Magnetics, vol. 46, no. 2, 2010, pp. 525 – 528. DOI 10.1109/TMAG.2009.2032835

  59. Zerovnik P., Grum J., Zerovnik G.: Determination of Hardness and Residual-Stress Variations in Hardened Surface Layers With Magnetic Barkhausen Noise. IEEE Trans on Magnetics, vol. 46, no. 3, 2010, pp. 899 – 904. DOI 10.1109/TMAG.2009.2032417

  60. Soto M., Martinez-de-Guerenu A., Gurruchaga K., Arizti F.: A Completely Configurable Digital System for Simultaneous Measurements of Hysteresis Loops and Barkhausen Noise. IEEE Trans on Instrum. & Meas., vol. 58, no. 5, pp. 1746 – 1755., 2009 DOI 10.1109/TIM.2009.2014510

  61. Sablik M.J., Augustyniak B., de Campos M.F., Landgraf F.: Modeling of Effect of Plastic Deformation on Barkhausen Noise and Magnetoacoustic Emission in Iron With 2% Silicon. IEEE Trans on Magnetics, vol. 44, no. 11, 2008, pp. 3221 – 3224. DOI 10.1109/TMAG.2008.2002803

  62. Pinotti E., Zani M., Puppin E.: Magneto-optical measurement of Barkhausen noise spectra. Review of Scientific Instruments, vol. 76, no. 11 2005, pp. 113906 – 113906-4., DOI 10.1063/1.2134232

  63. Blaow M.M., Evans J.T., Shaw B.A.: Magnetic Barkhausen Noise: The Influence of Microstructure and Deformation in Bending. Acta Materialia, Vol. 53, 2005, pp. 279 – 287. http://dx.doi.org/10.1016/j.actamat.2004.09.021

  64. Yamaguchi K., Tanaka S., Watanabe H., Nittono O., Takagi T., Yamada K.: Monte Carlo simulation for Barkhausen noise. IEEE Trans on Magnetics, vol. 40, no. 2, 2004, pp. 884 – 887. DOI 10.1109/TMAG.2004.824589

  65. Flammini A., Marioli D., Sardini E., Taroni A.: Robust estimation of magnetic Barkhausen noise based on a numerical approach. IEEE Trans on Instrum. & Meas., vol. 51, no. 6, 2002, pp. 1283 – 1288. DOI 10.1109/TIM.2002.807988

  66. Tsuchida Y., Ando T., Enokizono M.: Stress evaluation of steel plates by chaos of Barkhausen noise. IEEE Trans on Magnetics, vol. 38, no. 5, 2002, pp. 3210 – 3212. DOI 10.1109/TMAG.2002.802417

  67. Arnold C. S., McKinstry K. D.: Detection and quantification of Barkhausen noise in magnetoresistive read heads. Journal of Applied Physics, vol. 91, no. 10, 2002, pp. 7282 – 7284. DOI 10.1063/1.1452678

  68. Hamaguchi Takehiko, Ichihara Takayuki, Ohtsu Takayoshi: Analysis of Barkhausen noise failure caused by ESD in a GMR head. Electrical Overstress/Electrostatic Discharge Symp. (EOS/ESD '02), 2002, pp. 119 – 122. Print ISBN: 978-1-5853-7040-5

  69. Vaidyanathan S., Moorthy V., Jayakumar T., Raj B.: Evaluation of Induction Hardened Case Depth through Microstructural Characterization Using Magnetic Barkhausen Emission Techniques. Materials Science & Technology, Vol. 16, no. 2, 2000, pp. 202 – 208. http://dx.doi.org/10.1179/026708300101507550

  70. Jiles D.C.: Dynamics of domain magnetization and the Barkhausen effect. Czechoslovak Journal of Physics, Vol. 50, no. 8, 2000, pp. 893 – 924.

  71. Enokizono M., Todaka T., Yoshitomi Y.: Chaotic behavior of Barkhausen noise induced in silicon steel sheets. IEEE Trans on Magnetics, vol. 35, no. 5, 1999, pp. 3421 – 3423. DOI 10.1109/20.800544

  72. Saquet O., Chicois J., Vincent A.: Barkhausen Noise from Plain Carbon Steel: Analysis of the Influence of Microstructure. Materials Science & Eng.: A, Vol. 269, no. 1-2, 1999, pp. 73 – 82.

  73. Sablik M. J., Smith Marina Q., Waldhart C. J., McKee D. A., Augustyniak B.: The effects of biaxial stress on Barkhausen noise signals when the magnetic field is noncoaxial with the stress axes. Journal of Applied Physics, vol. 84, no. 11, pp. 6239 – 6249., 1998 DOI 10.1063/1.368943

  74. How H., Sun L., Vittoria C.: Modeling of Barkhausen noise in magnetic core material: Application of Preisach model. Journal of Applied Physics, vol. 81, no. 8, pp. 5594 – 5596., 1997 DOI 10.1063/1.364610

  75. Birsan M., Szpunar J. A., Krause T. W., Atherton D. L.: Correlation between the Barkhausen noise power and the total power losses in 3% Si–Fe. Journal of Applied Physics, vol. 79, no. 8, 1996, pp. 6042 – 6044. DOI 10.1063/1.362084

  76. Birsan M., Szpunar J.A., Krause T.W., Atherton D.L.: Magnetic Barkhausen noise study of domain wall dynamics in grain oriented 3% Si-Fe. IEEE Trans on Magnetics, vol. 32, no. 2, 1996, pp. 527 – 534. DOI 10.1109/20.486543

  77. Farrell G.P., Hill E.W.: The limit of fluxgate sensitivity due to Barkhausen noise for single layer and bi-layer permalloy thin film cores. IEEE Trans on Magnetics, vol. 31, no. 6, 1995, pp. 4050 – 4052. DOI 10.1109/20.489858

  78. Paperno E., Kaplan B.-Z.: Suppression of Barkhausen noise in magnetoresistive sensors employing AC bias. IEEE Trans on Magnetics, vol. 31, no. 6, 1995, pp. 3161 – 3163. DOI 10.1109/20.490314

  79. Sipahi L.B.: Influence of DC bias field, excitation and detection frequencies on magnetic Barkhausen noise analysis. IEEE Trans on Magnetics, vol. 30, no. 6, 1994, pp. 4590 – 4592. DOI 10.1109/20.334158

  80. Sipahi L.B.: Effects of creep damage, shot peening, and case hardening on magnetic Barkhausen noise analysis. IEEE Trans on Magnetics, vol. 30, no. 6, 1994, pp. 4830 – 4832. DOI 10.1109/20.334236

  81. Sablik M. J.: A model for the Barkhausen noise power as a function of applied field and stress (abstract). Journal of Applied Physics, vol. 75, no. 10, 1994, pp. 6769 DOI 10.1063/1.356824

  82. Koomatsubara M., Porteseil J.L., Nakamura H.: Comparison of Barkhausen noise power between soft ferrites and silicon steels. IEEE Trans on Magnetics, vol. 24, no. 2, pp. 1704 – 1706., 1988 DOI 10.1109/20.11576

  83. Tsang C., Decker S. K.: The origin of Barkhausen noise in small permalloy magnetoresistive sensors. Journal of Applied Physics, vol. 52, no. 3, 1981, pp. 2465 – 2467. DOI 10.1063/1.328968

  84. Baldwin J. A., Milstein F.: Barkhausen noise power versus size of a minor hysteresis loop. Journal of Applied Physics, vol. 44, no. 10, 1973, pp. 4739 – 4742. DOI 10.1063/1.1662028

  85. Baldwin J. A., Pickles G. M.: Power spectrum of Barkhausen noise in simple materials. Journal of Applied Physics, vol. 43, no. 11, 1972, pp. 4746 – 4749. DOI 10.1063/1.1661000

  86. Baldwin J. A., Pickles G. M.: Autocorrelation Function of Barkhausen Noise in Simple Materials. Journal of Applied Physics, vol. 43, no. 3, 1972, pp. 1263 – 1268. DOI 10.1063/1.1661248

  87. Krumhansl J. A., Bever R. T.: Barkhausen Noise and Magnetic Amplifiers: Part I-Theory of Magnetic Amplifiers. J. Appl. Phys., Vol. 20, May, 1949, pp. 432 – 436. DOI 10.1063/1.1698399

  88. Krumhansl J. A., Bever R. T.: Barkhausen Noise and Magnetic Amplifiers: Part II-Analysis of the Noise. J. Appl. Phys., Vol. 20, June, 1949, pp. 582 – 586. DOI 10.1063/1.1698430

Back to top list

 

Burst noise (Popcorn noise, impulse noise, RTS noise or RTN)

  1. Tassis D.H., Stavrinides S.G., Hanias M.P., et al.: Chaotic Behavior of Random Telegraph Noise in Nanoscale UTBB FD-SOI MOSFETs. IEEE ED Lett., Vol. 38, no. 4, 2017, pp. 517 – 520. DOI 10.1109/LED.2017.2672783

  2. Marquez C., Rodriguez N., Gamiz F., et al.: Systematic method for electrical characterization of random telegraph noise in MOSFETs. Solid-State Electronics, Vol. 128, Special Issue: SI, 2017, pp. 115 – 120. DOI 10.1016/j.sse.2016.10.031

  3. Liao Yiming, Ji Xiaoli, Xu Yue, et al.: Random telegraph noise on the threshold voltage of multi-level flash memory. Chinese Physics B, Vol. 26, no. 1, 2017, Article # 018502. https://doi.org/10.1088/1674-1056/26/1/018502

  4. Puglisi F.M., Larcher L., Padovani A., et al.: Anomalous random telegraph noise and temporary phenomena in resistive random access memory. Solid-State Electronics, Vol. 125, 2016, pp. 204 – 213. DOI 10.1016/j.sse.2016.07.019

  5. Puglisi F.M., Costantini F., Kaczer B., et al.: Monitoring Stress-Induced Defects in HK/MG FinFETs Using Random Telegraph Noise. IEEE ED Lett., Vol. 37, no. 9, 2016, pp. 1211 – 1214. DOI 10.1109/LED.2016.2590883

  6. Puglisi F.M., Pavan P.: Guidelines for a Reliable Analysis of Random Telegraph Noise in Electronic Devices. IEEE Trans on Instr. & Meas., Vol. 65, no. 6, 2016, pp. 1435 – 1442. DOI 10.1109/TIM.2016.2518880

  7. Lee Jang Woo, Choi Woo Young: Random Telegraph Noise Model of Tunnel Field-Effect Transistors. J. of Nanoscience and Nanotechnology, Vol. 16, no. 10, 2016, pp. 10264 – 10267. DOI 10.1166/jnn.2016.13140

  8. da Silva Mauricio Banaszeski, Tuinhout H.P., Zegers-van Duijnhoven A., et al.: A Physics-Based Statistical RTN Model for the Low Frequency Noise in MOSFETs. IEEE Trans on ED, Vol. 63, no. 9, 2016, pp. 3683 – 3692. DOI 10.1109/TED.2016.2593916

  9. Chou Y. L., Wang Tahui, Lin Mercator, et al.: Poly-Silicon Trap Position and Pass Voltage Effects on RTN Amplitude in a Vertical NAND Flash Cell String. IEEE ED Lett., Vol. 37, no. 8, 2016, pp. 998 – 1001. DOI 10.1109/LED.2016.2585860

  10. Seo Youngsoo, Yoo Sungwon, Shin Joonha, et al.: Extraction of Distance Between Interface Trap and Oxide Trap from Random Telegraph Noise in Gate-Induced Drain Leakage. J. of Nanoscience and Nanotechnology, Vol. 16, no. 5, 2016, pp. 5247 – 5251. DOI 10.1166/jnn.2016.12238

  11. Lee Hyunseul, Cho Karam, Shin Changhwan, et al.: Impact of Trap Position on Random Telegraph Noise in a 70-angstrom Nanowire eld-Effect Transistor. J. of Semiconductor Technology & Science, Vol. 16, no. 2, Special Issue: SI, 2016, pp. 185 – 190. DOI 10.5573/JSTS.2016.16.2.185

  12. Marquez C., Rodriguez N., Gamiz F., et al.: Electrical characterization of Random Telegraph Noise in Fully-Depleted Silicon-On-Insulator MOSFETs under extended temperature range and back-bias operation. Solid-State Electronics, Vol. 117, 2016, pp. 60 – 65. DOI 10.1016/j.sse.2015.11.022

  13. Maestro M., Diaz J., Crespo-Yepes A., et al.: New high resolution Random Telegraph Noise (RTN) characterization method for resistive RAM. Solid-State Electronics, Vol. 115, 2016, pp. 140 – 145. DOI 10.1016/j.sse.2015.08.010

  14. Song Younggul, Jeong Hyunhak, Chung Seungjun, et al.: Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices. Scientific Reports, Vol. 6, 2016, Article # 33967. DOI 10.1038/srep33967

  15. Zhang Yu, Lu Xinmiao, Wang Guangyi, et al.: Modeling random telegraph signal noise in CMOS image sensor under low light based on binomial distribution. Chinese Physics B, Vol. 25, no. 7, 2016, Article # 070503. DOI 10.1088/1674-1056/25/7/070503

  16. Chen Xiaoming, Wang Lin, Li Boxun, et al.: Modeling Random Telegraph Noise as a Randomness Source and its Application in True Random Number Generation. IEEE Trans on CAD of Integrated Circuits and Systems, Vol. 35, no. 9, 2016, pp. 1435 – 1448. DOI 10.1109/TCAD.2015.2511074

  17. Toshihiro Tomita, Kousuke Miyaji: Number of traps and trap depth position on statistical distribution of random telegraph noise in scaled NAND flash memory. Japanese Journal of Applied Physics, Vol. 55, no. 4S, 2016, Article # 04EE08. https://doi.org/10.7567/JJAP.55.04EE08

  18. Dongaonkar S., Giles M.D., Kornfeld A., et al.: Random Telegraph Noise (RTN) in 14nm Logic Technology: High Volume Data Extraction and Analysis. 36th IEEE Symp. on VLSI Technology, 2016, pp. 1 – 2. DOI 10.1109/VLSIT.2016.7573424

  19. Yang Chen-Chen, Chen Yung-Chen, Lin Horng-Chih, et al.: Fabrication and RTN Characteristics of Gate-All-Around Poly-Si Junctionless Nanowire Transistors. IEEE Silicon Nanoelectronics Workshop (SNW), 2016, pp. 64 – 65. DOI 10.1109/SNW.2016.7577987

  20. Kuroda Rihito, Teramoto Akinobu, Sugawa Shigetoshi: Random Telegraph Noise Measurement and Analysis based on Arrayed Test Circuit toward High S/N CMOS Image Sensors. 29th IEEE Int. Conf on Microelectronic Test Structures (ICMTS), 2016, pp. 46 – 51. DOI 10.1109/ICMTS.2016.7476172

  21. Mukherjee C., Jacquet T., Zimmer T., et al.: Comprehensive Study of Random Telegraph Noise in Base and Collector of advanced SiGe HBT: Bias, Geometry and Trap Locations. Proc. of the European Solid-State Device Research Conf. (ESSDERC), 2016, pp. 260 – 263. DOI 10.1109/ESSDERC.2016.7599635

  22. Toshihiro Tomita, Kousuke Miyaji: Channel doping concentration and cell program state dependence on random telegraph noise spatial and statistical distribution in 30 nm NAND flash memory. Japanese J. of Applied Physics, Vol. 54, no. 4S, 2015, Article # 04DD02. https://doi.org/10.7567/JJAP.54.04DD02

  23. Paradisi P., Allegrini P.: Scaling law of diffusivity generated by a noisy telegraph signal with fractal intermittency. Chaos Solitons & Fractals, Vol. 81, Part: B, 2015, pp. 451 – 462. DOI 10.1016/j.chaos.2015.07.003

  24. Mulong Luo, Runsheng Wang, Shaofeng Guo, Jing Wang, Jibin Zou, Ru Huang: Impacts of Random Telegraph Noise (RTN) on Digital Circuits. IEEE Trans on ED, Vol. 62, no. 6, 2015, pp. 1725 – 1732. DOI 10.1109/TED.2014.2368191

  25. Klyuev A.V., Yakimov A.V.: Investigation of 1/f Noise and Superimposed RTS Noise in Ti-Au/n-Type GaAs Schottky Barrier Diodes. Fluct. & Noise Lett., Vol. 14, no. 4, 2015, Article # 1550041. DOI 10.1142/S0219477515500418

  26. Chen Ming-Jer, Tu Kong-Chiang, Chuang Li-Yang, Wang Huan-Hsiung: Graphically Transforming Mueller-Schulz Percolation Criteria to Random Telegraph Signal Magnitudes in Scaled FETs. IEEE ED Lett., Vol. 36, no. 3, 2015, pp. 217 – 219. DOI 10.1109/LED.2015.2388787

  27. Si Mengwei, Conrad N.J., Shin Sanghoon, et al.: Low-Frequency Noise and Random Telegraph Noise on Near-Ballistic III-V MOSFETs. IEEE Trans on ED, Vol. 62, no. 11, 2015, pp. 3508 – 3515. DOI 10.1109/TED.2015.2433921

  28. Puglisi F.M., Francesco M., Larcher L., Padovani A., et al.: A Complete Statistical Investigation of RTN in HfO2-Based RRAM in High Resistive State. IEEE Trans on ED, Vol. 62, no. 8, 2015, pp. 2606 – 2613. DOI 10.1109/TED.2015.2439812

  29. Yoo Sung-Won, Shin Joonha, Seo Youngsoo, et al.: Characterizing traps causing random telegraph noise during trap-assisted tunneling gate-induced drain leakage. Solid-State Electronics, Vol. 109, 2015, pp. 42 – 46. DOI 10.1016/j.sse.2015.03.007

  30. Huang Po-Chin, Chen Jone F., Tsai Shih Chang, et al.: Impact of Uniaxial Strain on Random Telegraph Noise in High-k/Metal Gate pMOSFETs. IEEE Trans on ED, Vol. 62, no. 3, 2015, pp. 988 – 993. DOI 10.1109/TED.2015.2391298

  31. Yang Xiaonan, Zheng Zhiwei, Wang Yan, et al.: Gate Bias Dependence of Complex Random Telegraph Noise Behavior in 65-nm NOR Flash Memory. IEEE ED Lett., Vol. 36, no. 1, 2015, pp. 26 – 28. DOI 10.1109/LED.2014.2367104

  32. Higashi Yusuke, Matsuzawa Kazuya, Ishihara Takamitsu: Comprehensive studies on the accuracy of trap characterization by using advanced random telegraph noise simulator. Japanese Journal of Applied Physics, Vol. 54, no. 4, Special Issue: SI, 2015, Article # 04DC14. DOI 10.7567/JJAP.54.04DC14

  33. Ota Kensuke, Saitoh Masumi, Tanaka Chika, et al.: Experimental Study of Random Telegraph Noise in Trigate Nanowire MOSFETs. IEEE Trans on ED, Vol. 62, no. 11, 2015, pp. 3799 – 3804. DOI 10.1109/TED.2015.2471840

  34. Mahmutoglu A.G., Demir A.: Modeling and Simulation of Low-Frequency Noise in Nano Devices: Stochastically Correct and Carefully Crafted Numerical Techniques. IEEE Trans on CAD of Integrated Circuits and Systems, Vol. 34, no. 5, 2015, pp. 794 – 807. DOI 10.1109/TCAD.2014.2376985

  35. Kazutoshi Kobayashi: Defect-Oriented Degradations in Recent VLSIs: Random Telegraph Noise, Bias Temperature Instability and Total Ionizing Dose. http://www-vlsi.es.kit.ac.jp/thesis/papers/pdfs/RASEDA11_kobayashi.pdf kazutoshi.kobayashi@kit.ac.jp

  36. Higashi Y., Momo N., Sasaki H., Momose H.S., Ohguro T., Mitani Y., Ishihara T., Matsuzawa K.: Unified Transient and Frequency Domain Noise Simulation for Random Telegraph Noise and Flicker Noise Using a Physics-Based Model. IEEE Trans on ED, Vol. 61, no. 12, 2014, pp. 4197 – 4203. DOI 10.1109/TED.2014.2365015

  37. Jhang Sung Ho: Analysis of random telegraph noise observed in semiconducting carbon nanotube quantum dots. Synthetic Metals, Vol. 198, 2014, pp. 118 – 121. https://doi.org/10.1016/j.synthmet.2014.09.032

  38. Kang Ho-Jung, Jeong Min-Kyu, Joe Sung-Min, et al.: Characterization of random telegraph noise generated in the space region in NAND flash memory strings. Semiconductor Science and Technology, Vol. 29, no. 12, 2014, Article # 125001. DOI 10.1088/0268-1242/29/12/125001

  39. Puglisi F.M., Pavan P., Padovani A., et al.: A study on HfO2 RRAM in HRS based on I-V and RTN analysis. Solid-State Electronics, Vol. 102, 2014, pp. 69 – 75. DOI 10.1016/j.sse.2014.06.001

  40. Ambrogio S., Balatti S., Cubeta A., et al.: Statistical Fluctuations in HfOx Resistive-Switching Memory: Part II-Random Telegraph Noise. IEEE Trans on ED, Vol. 61, no. 8, 2014, pp. 2920 – 2927. DOI 10.1109/TED.2014.2330202

  41. Obara Toshiki, Yonezawa Akihiro, Teramoto Akinobu, et al.: Extraction of time constants ratio over nine orders of magnitude for understanding random telegraph noise in metal-oxide-semiconductor field-effect transistors. Japanese Journal of Applied Physics, Vol. 53, no. 4, Special Issue: SI, 2014, Article # 04EC19. DOI 10.7567/JJAP.53.04EC19

  42. Fan Ming-Long, Yang Shao-Yu, Hu Vita Pi-Ho, et al.: Single-trap-induced random telegraph noise for FinFET, Si/Ge Nanowire FET, Tunnel FET, SRAM and logic circuits. Microelectronics Reliability, Vol. 54, no. 4, 2014, pp. 698 – 711. DOI 10.1016/j.microrel.2013.12.026

  43. Pandey Rahul, Rajamohanan Bijesh, Liu Huichu, et al.: Electrical Noise in Heterojunction Interband Tunnel FETs. IEEE Trans on ED, Vol. 61, no. 2, Special Issue: SI, 2014, pp. 552 – 560. DOI 10.1109/TED.2013.2293497

  44. Pandey Rahul, Saripalli Vinay, Kulkarni Jaydeep P., et al.: Impact of Single Trap Random Telegraph Noise on Heterojunction TFET SRAM Stability. IEEE ED Lett., Vol. 35, no. 3, 2014, pp. 393 – 395. DOI 10.1109/LED.2014.2300193

  45. Luo Mulong, Wang Runsheng, Wang Jing, et al.: Compact Modeling of Random Telegraph Noise in Nanoscale MOSFETs and Impacts on Digital Circuits. Proc. of Int. Symp. on VLSI Technology, Systems and Application (VLSI-TSA), 2014. DOI 10.1109/VLSI-TSA.2014.6839681

  46. Moon Dyukyoung, Lee Hyunseul, Shin Changhwan, et al.: Analysis and modeling for random telegraph noise of GIDL current in saddle MOSFET for DRAM application. IEICE Electronics Express, Vol. 11, no. 13, 2014, Article # 20140468. DOI 10.1587/elex.11.20140468

  47. Choi Shinhyun, Yang Yuchao, Lu Wei: Random telegraph noise and resistance switching analysis of oxide based resistive memory. Nanoscale, Vol. 6, no. 1, 2014, pp. 400 – 404. DOI 10.1039/c3nr05016e

  48. Martin-Martinez J., Diaz J., Rodriguez R., Nafria M., Aymerich X.: New Weighted Time Lag Method for the Analysis of Random Telegraph Signals. IEEE ED Lett., Vol. 35, no. 4, 2014, pp. 479 – 481. DOI 10.1109/LED.2014.2304673

  49. Kapila G., Reddy V.: Impact of Sampling Rate on RTN Time Constant Extraction and Its Implications on Bias Dependence and Trap Spectroscopy. IEEE Trans on Device and Materials Reliability, Vol. 14, no. 2, 2014, pp. 616 – 622. DOI 10.1109/TDMR.2014.2305972

  50. Tsar Shih-Chang, Wu San-Lein, Huang Po-Chin, et al.: Investigation of trap properties of Hf0.83Zr0.17O2 high-k gate stack p-type MOSFETs by low-frequency (1/f) noise and random telegraph noise analyses. Japanese Journal of Applied Physics, Vol. 53, no. 8, Special Issue: 1, 2014, pp. 28 – 31. DOI 10.7567/JJAP.53.08LB03

  51. Zhang Ye, Wu Huaqiang, Wu Minghao, et al.: Random telegraph noise analysis in AlOx/WOy resistive switching memories. Applied Physics Lett., Vol. 104, no. 10, 2014, Article # 103507. DOI 10.1063/1.4868383

  52. Grasser T., Rott K., Reisinger H., et al.: A Unified Perspective of RTN and BTI. IEEE Int. Reliability Physics Symp. (IRPS), 2014, pp. 4A.5.1 – 4A.5.7. DOI 10.1109/IRPS.2014.6860643

  53. Yonezawa A., Kuroda R., Teramoto A., Obara T., Sugawa S.: A statistical evaluation of effective time constants of random telegraph noise with various operation timings of in-pixel source follower transistors. Proc. SPIE 9022, Image Sensors and Imaging Systems, Vol. 90220F, 2014. http://dx.doi.org/10.1117/12.2041090 

  54. Zhijuan Tu, Zhiping Zhou, Xingjun Wang: Investigation of Random Telegraph Noise in the Dark Current of Germanium Waveguide Photodetector. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 20, no. 4, 2014, pp.1 – 6. DOI 10.1109/JSTQE.2013.2288291

  55. Chung Hyun-Jong, Woo Uhm Tae, Won Kim Sung, Gyu You Young, Wook Lee Sang, Ho Jhang Sung, Campbell E.B., Woo Park Yung: Random Telegraph Noise in Metallic Single-Walled Carbon Nanotubes. Applied Physics Letters, Vol. 104, no. 19, 2014, pp. 193102 – 193102-4. DOI 10.1063/1.4876443

  56. Endean D.E., Weigelt C.T., Victora R.H., Dan Dahlberg E.: Tunable Random Telegraph Noise in Individual Square Permalloy Dots. Applied Physics Letters, Vol. 104, no. 25, 2014, pp.252408.1 – 252408.5. DOI 10.1063/1.4884818

  57. Raghavan N., Degraeve R., Fantini A, Goux L., Strangio S., Govoreanu B., Wouters D.J., Groeseneken G., Jurczak M.: Microscopic Origin of Random Telegraph Noise Fluctuations in Aggressively Scaled RRAM and its Impact on Read Disturb Variability. IEEE Int. Reliability Physics Symp. (IRPS), 2013, pp. 5E.3.1 – 5E.3.7. DOI 10.1109/IRPS.2013.6532042

  58. Bo Chin Wang, San Lein Wu, Yu Ying Lu, Shoou Jinn Chang, Jone Fang Chen, Shih Chang Tsai, Che Hua Hsu, Chih Wei Yang, Cheng Guo Chen, Cheng O., Po Chin Huang: Comparison of the Trap Behavior Between ZrO2 and HfO2 Gate Stack nMOSFETs by 1/f Noise and Random Telegraph Noise. IEEE ED Lett., Vol. 34, no. 2, 2013, pp 151 – 153. DOI 10.1109/LED.2012.2226698

  59. Liang-Shun Chang, Chien-Yuan Huang, Yuan-Heng Tseng, Ya-Chin King, Chrong-Jung Lin: Temperature Sensing Scheme Through Random Telegraph Noise in Contact RRAM. IEEE ED Lett., Vol. 34, no. 1, 2013, pp. 12 – 14. DOI 10.1109/LED.2012.2226137

  60. Cher Xuan Zhang, En Xia Zhang, Fleetwood D.M., Schrimpf R.D., Dhar S., Sei-Hyung Ryu, Xiao Shen, Pantelides S.T.: Origins of Low-Frequency Noise and Interface Traps in 4H-SiC MOSFETs. IEEE ED Lett., Vol. 34, no. 1, 2013, pp 117 – 119. DOI 10.1109/LED.2012.2228161

  61. Amoroso S.M., Compagnoni C.M., Ghetti A., Gerrer L., Spinelli A.S., Lacaita A.L., Asenov A.: Investigation of the RTN Distribution of Nanoscale MOS Devices from Subthreshold to On-State. IEEE ED Lett., Vol. 34, no. 5, 2013, pp 683 – 685. DOI 10.1109/LED.2013.2250477

  62. Aadithya K.V., Demir A., Venugopalan S., Roychowdhury J.: Accurate Prediction of Random Telegraph Noise Effects in SRAMs and DRAMs. IEEE Trans on CAD of Integrated Circuits and Systems, Vol. 32, no. 1, 2013, pp. 73 – 86. DOI 10.1109/TCAD.2012.2212897

  63. Holloway G.W., Song Yipu, Haapamaki C.M., LaPierre R.R., Baugh J.: Trapped Charge Dynamics in InAs Nanowires. Journal of Applied Physics, Vol.113, no. 2, 2013, pp 024511-1 – 024511-5. DOI 10.1063/1.4773820

  64. Ito K., Matsumoto T., Nishizawa S., Sunagawa H., Kobayashi K., Onodera H. : Modeling of Random Telegraph Noise under circuit operation — Simulation and measurement of RTN-induced delay fluctuation. 12th Int. Symp. on Quality Electronic Design (ISQED), 2011, pp.1 – 6. DOI 10.1109/ISQED.2011.5770698

  65. Liu W.H., Pey K.L., Raghavan N., Wu X., Bosman M., Kauerauf T.: Random telegraph noise reduction in metal gate high-κ stacks by bipolar switching and the performance boosting technique. IEEE Int. Reliability Physics Symp. (IRPS), 2011, pp.3A.1.1 – 3A.1.8. DOI 10.1109/IRPS.2011.5784474

  66. Goes W., Schanovsky F., Grasser T., Reisinger H., Kaczer B.: Advanced modeling of oxide defects for random telegraph noise. 21st Int. Conf. on Noise and Fluctuations (ICNF), 12-16 June 2011, pp 204 – 207. DOI 10.1109/ICNF.2011.5994301

  67. Tong Boon Tang, Murray A.F., Roy S.: Methodology of Statistical RTS Noise Analysis With Charge-Carrier Trapping Models. IEEE Trans on CAS I: Regular Papers, vol. 57, no. 5, 2010, pp. 1062 – 1070. DOI 10.1109/TCSI.2010.2043988

  68. Teramoto A., Fujisawa T., Abe K., Sugawa S., Ohmi T.: Statistical evaluation for trap energy level of RTS characteristics. 2010 Symp on VLSI Technology (VLSIT), 2010, pp. 99 – 100. DOI 10.1109/VLSIT.2010.5556186

  69. Zanolla N., Siprak D., Tiebout M., Baumgartner P., Sangiorgi E., Fiegna C.: Reduction of RTS Noise in Small-Area MOSFETs Under Switched Bias Conditions and Forward Substrate Bias. IEEE Trans on ED, vol. 57, no. 5, 2010, pp.1119 – 1128. DOI 10.1109/TED.2010.2043554

  70. Mori Yuki, Takeda Kenichi, Yamada Ren-ichi: Random telegraph noise of junction leakage current in submicron devices. Journal of Applied Physics, vol. 107, no. 1, 2010, pp. 014509 – 014509-10. DOI 10.1063/1.3268479

  71. Pavelka J., Sikula J., Chvatal M., Tacano M., Toita M.: RTS noise amplitude and electron concentration in MOSFETs. Proc of 27th Int. Conf on Microelectronics (MIEL), 2010, pp. 475 – 478. DOI 10.1109/MIEL.2010.5490439

  72. Karami M. A., Carrara L., Niclass C., Fishburn M., Charbon E.: RTS Noise Characterization in Single-Photon Avalanche Diodes. IEEE ED Letters, vol. 31, no. 7, 2010, pp. 692 – 694. DOI 10.1109/LED.2010.2047234

  73. Hong B.B., Choi L., Jung Y.C., Hwang S.W., Cho K.H., Yeo K.H., Kim D., Jin G.Y., Park D., Song S.H., Lee Y.Y., Son M.H., Ahn D.: Temperature Dependent Study of Random Telegraph Noise in Gate-All-Around PMOS Silicon Nanowire Field-Effect Transistors. IEEE Trans on Nanotechnology, Vol 9, no 6, 2010, pp 754 – 758. DOI 10.1109/TNANO.2010.2045006

  74. Martin-Gonthier P., Magnan P.: RTS noise impact in CMOS image sensors readout circuit. 16th IEEE Int. Conf on Electronics, Circuits, and Systems (ICECS 2009), 2009, pp. 928 – 931. DOI 10.1109/ICECS.2009.5410825

  75. Tong Boon Tang, Murray A.F.: Integrating RTS noise into circuit analysis. IEEE Int. Symp on Circuits and Systems (ISCAS 2009), 2009, pp. 585 – 588. DOI 10.1109/ISCAS.2009.5117816

  76. Konczakowska A., Cichosz J., Szewczyk A.: A New Method for RTS Noise of Semiconductor Devices Identification. IEEE Trans on Instrum. & Meas., vol. 57, no. 6, 2008, pp. 1199 – 1206. DOI 10.1109/TIM.2007.915098

  77. Sikula J., Pavelka J., Tacano M., Toita M.: GRT model of RTS noise in MOSFETs. 2009 Int. Conf on Microelectronics (ICM), 2009, pp. 296 – 299. DOI 10.1109/ICM.2009.5418625

  78. Pavelka J., Sikula J., Tacano M., Toita M.: Amplitude of RTS noise in MOSFETs. 2009 Int. Conf on Microelectronics (ICM), 2009, pp. 346 – 349. DOI 10.1109/ICM.2009.5418614

  79. Sing-Rong Li, McMahon W., Lu Y.-L.R., Yung-Huei Lee: RTS Noise Characterization in Flash Cells. IEEE ED Letters, vol. 29, no. 1, 2008, pp. 106 – 108. DOI 10.1109/LED.2007.910776

  80. Raoult J., Pascal F., Delseny C., Marin M., Deen M. J.: Impact of carbon concentration on 1/f noise and random telegraph signal noise in SiGe:C heterojunction bipolar transistors. Journal of Applied Physics, vol. 103, no. 11, 2008, pp. 114508 – 114508-10. DOI 10.1063/1.2939252

  81. Konczakowska A., Cichosz J., Szewczyk A.: A New Method for RTS Noise of Semiconductor Devices Identification. IEEE Trans on Instr. & Meas., Vol. 57, no. 6, 2008, pp 1199 – 1206. DOI 10.1109/TIM.2007.915098

  82. Zanolla N., Siprak D., Tiebout M., Baumgartner P., Sangiorgi E., Fiegna C.: The impact of substrate bias on RTS and flicker noise in MOSFETs operating under switched gate bias. 9th Int. Conf. on Solid-State and Integrated-Circuit Technology, (ICSICT 2008), 2008, pp. 80 – 83. DOI 10.1109/ICSICT.2008.4734476

  83. Grandchamp B., Maneux C., Labat N., Touboul A., Scavennec A., Riet M., Godin J.: Evidence of RTS noise in emitter-base periphery of InP/GaAsSb/InP HBT. 20th Int. Conf on Indium Phosphide and Related Materials (IPRM 2008), 2008, pp. 1 – 4. DOI 10.1109/ICIPRM.2008.4703044

  84. Neng-Ping Wang, S. Heinze, J. Tersoff: Random-Telegraph-Signal Noise and Device Variability in Ballistic Nanotube Transistors. Nano Lett., 2007, Vol 7, no 4, pp 910 – 913. DOI 10.1021/nl062742h

  85. Giusi G., Crupi F., Pace C.: A Procedure For Extracting 1/f Noise From Random Telegraph Signals. Proc of IEEE Instrum. and Measurement Technology Conf, (IMTC 2007), 2007, pp. 1 – 4. DOI 10.1109/IMTC.2007.379385

  86. Miller D. A., Poocharoen P., Forbes L.: 1/f Noise and RTS (Random Telegraph Signal) Errors in Sense Amplifiers. IEEE Workshop on Microelectronics and Electron Devices (WMED 2007), 2007, pp. 21 – 22. DOI 10.1109/WMED.2007.368839

  87. Sing-Rong Li, Lu Y.-L.R., McMahon W., Yung-Huei Lee, Mielke N.: RTS and 1/f Noise in Flash Memory. Int. Symp on VLSI Technology, Systems and Applications (VLSI-TSA 2007), 2007, pp. 1 – 2. DOI 10.1109/VTSA.2007.378918

  88. Fantini P., Ghetti A., Marinoni A., Ghidini G., Visconti A., Marmiroli A.: Giant Random Telegraph Signals in Nanoscale Floating-Gate Devices. IEEE Electron Device Letters, vol. 28, no. 12, 2007, pp. 1114 – 1116. DOI 10.1109/LED.2007.909835

  89. Miller D. A., Poocharoen P., Forbes L.: Subthreshold Leakage Due to 1/F Noise and RTS (Random Telegraph Signals). IEEE Workshop on Microelectronics and Electron Devices (WMED 2007), 2007, pp. 23 – 24. DOI 10.1109/WMED.2007.368840

  90. Fei Liu, Wang K.L., Chao Li, Chongwu Zhou: Study of Random Telegraph Signals in Single-Walled Carbon Nanotube Field Effect Transistors. IEEE Trans on Nanotechnology, Vol. 5, no 5, 2006, pp 441 – 445. DOI 10.1109/TNANO.2006.880906

  91. Kolhatkar J.S., Hoekstra E., Salm C., van der Wel A.P., Klumperink E.A.M., Schmitz J., Wallinga H.: Modeling of RTS noise in MOSFETs under steady-state and large-signal excitation. IEEE Int. Electron Devices Meeting, IEDM Technical Digest, 2004, pp. 759 – 762. DOI 10.1109/IEDM.2004.1419283

  92. Van der Wel A.P., Klumperink E.A.M., Vandamme L.K.J., Nauta B.: Modeling random telegraph noise under switched bias conditions using cyclostationary RTS noise. IEEE Trans on ED, vol. 50, no. 5, 2003, pp. 1378 – 1384. DOI 10.1109/TED.2003.813247

  93. Pogany D., Chroboczek J. A., Ghibaudo G.: Random telegraph signal noise mechanisms in reverse base current of hot carrier-degraded submicron bipolar transistors: Effect of carrier trapping during stress on noise characteristics. Journal of Applied Physics, vol. 89, no. 7, 2001, pp. 4049 – 4058. DOI 10.1063/1.1352560

  94. Martin S., Li G.P., Huinan Guan, D'Souza S.: A BSIM3-based flat-band voltage perturbation model for RTS and 1/f noise. IEEE ED Letters, vol. 21, no. 1, 2000, pp. 30 – 33. DOI 10.1109/55.817443

  95. Yuzhelevski Y., Yuzhelevski M., Jung G.: Random telegraph noise analysis in time domain. Review of Scientic Instruments, Vol. 71, No. 4, 2000, pp 1682 – 1688. DOI 10.1063/1.1150519

  96. Martin S., Li G.P., Guan H., D'Souza S., Matloubian M., Claudius G., Compton G.: BSIM3 based RTS and 1/f noise models suitable for circuit simulators. Int. Electron Devices Meeting, IEDM '98 Technical Digest, 1998, pp. 85 – 88. DOI 10.1109/IEDM.1998.746284

  97. Ouisse T., Platel E., Billon T., Lahreche H.: Observation of random telegraph signal in SiC Schottky diodes. Electronics Letters, vol. 33, no. 22, pp. 1907 – 1909., 1997 DOI 10.1049/el:19971302

  98. Simoen E., Claeys C.: Gate length effect on the RTS noise amplitude in SOI MOSFETs. IEEE ED Letters, vol. 17, no. 4, pp. 181 – 183., 1996 DOI 10.1109/55.485167

  99. Liu F.H., Kryder M.H.: Inductance fluctuation, domain instability and popcorn noise in thin film heads. IEEE Trans on Magnetics, vol. 30, no. 6, 1994, pp. 3885 – 3887. DOI 10.1109/20.333933

  100. Liu F. H., Kryder M. H.: Dynamic domain instability and popcorn noise in thin‐film heads. Journal of Applied Physics, vol. 75, no. 10, pp. 6391 – 6393., 1994
    DOI 10.1063/1.355360

  101. Simoen E., Dierickx B., Claeys C.L., Declerck G.J.: Explaining the amplitude of RTS noise in submicrometer MOSFETs. IEEE Trans on ED, vol. 39, no. 2, 1992, pp. 422 – 429. DOI 10.1109/16.121702

  102. Morikawa K., Matsuura T., Horibata S., Shibata H.: A study of popcorn noise for thin film heads. IEEE Trans on Magnetics, vol. 27, no. 6, 1991, pp. 4939 – 4941. DOI 10.1109/20.278702

  103. Roux O., Dierickx B., Simoen E., Claeys C., Ghibaudo G., Brini J.: Investigation of Drain Current RTS Noise in Small Area Silicon MOS Transistors. 21st European Solid State Device Research Conf. (ESSDERC '91), 1991, pp. 547 – 550. Print ISBN: 0444890661

  104. Cottle J., Chen C.: Computerized Analysis of Burst Noise in Thick Film Resistors. IEEE Trans on Components, Hybrids, and Manufacturing Technology, vol. 6, no. 2, 1983, pp. 163 – 167. DOI 10.1109/TCHMT.1983.1136172

  105. Roedel R., Viswanathan C.R.: Reduction of popcorn noise in integrated circuits. IEEE Trans on ED, vol. 22, no. 10, 1975, pp. 962 – 964. DOI 10.1109/T-ED.1975.18251

  106. Koji T.: The effect of emitter-current density on popcorn noise in transistors. IEEE Trans on ED, vol. 22, no. 1, 1975, pp. 24 – 25. DOI 10.1109/T-ED.1975.18067

  107. Koji T.: Popcorn noise and generation-recombination noise observed in ion-implanted silicon resistors. Electronics Letters, vol. 11, no. 9, 1975, pp. 185 – 186. DOI 10.1049/el:19750141

  108. Oren R.: Discussion of various views on popcorn noise. IEEE Trans on ED, vol. 18, no. 12, 1971, pp. 1194 – 1195. DOI 10.1109/T-ED.1971.17359

  109. Hsu S. T., Whittier R.J., Mead C. A.: Physical Model for Burst Noise in Semiconductor Devices. Solid-State Electronics, Vol. 13, no 7, 1970, pp 1055 – 1071. doi:10.1016/0038-1101(70)90102-4

  110. Hsu S.T., Whittier R.J.: Characteristics of burst (popcorn) noise in transistors and operational amplifiers. 1969 Int Electron Devices Meeting, vol. 15, 1969, pp. 86 – 88. DOI 10.1109/IEDM.1969.188144

  111. Leonard P.L., Jaskolski S.V.: Micro-plasma model of Popcorn noise. 1969 Int Electron Devices Meeting, vol. 15, 1969, pp. 84 – 86. DOI 10.1109/IEDM.1969.188143

  112. Leonard P.L., Jaskolski S.V.: An investigation into the origin and nature of Popcorn noise. Proc of the IEEE, vol. 57, no. 10, 1969, pp. 1786 – 1788. DOI 10.1109/PROC.1969.7412

    Back to top list

     

    Diffusion noise

  1. Manukhov V.V., Fedortsov A.B.: Contactless nondestructive method for determination of the carrier diffusion length in semiconductors and dielectrics. Journal of Physics: Conference Series, Vol. 816, no. 1, 2017, Article # 012041. DOI 10.1088/1742-6596/816/1/012041

  2. Djennati Z.A., Ghaffour K.: Noise Characterization in InAlAs/InGaAs/InP pHEMTs for Low Noise Applications. Int. Journal of Electrical & Computer Eng. (IJECE), Vol. 7, no. 1, 2017, pp. 176 – 183. DOI 10.11591/ijece.v7i1

  3. Fujii S., Yagi T., Hamada S., et al.: Analyzing the effects of boron transient enhanced diffusion on low frequency noise in NMOSFETs. IEEE Int. Reliability Physics Symp. (IRPS), 2017, pp. XT-3.1 – XT-3.5. DOI 10.1109/IRPS.2017.7936417

  4. Felekidis N., Melianas A., Kemerink M.: Nonequilibrium drift-diffusion model for organic semiconductor devices. Physical Review B, Vol. 94, no. 3, 2016, Article # 035205. https://doi.org/10.1103/PhysRevB.94.035205

  5. Riya Bose, Jingya Sun, Jafar I. Khan, Basamat S. Shaheen, et al.: Real-Space Visualization of Energy Loss and Carrier Diffusion in Semiconductor Nanowire Array using Four-Dimensional Electron Microscopy. Advanced Materials, Vol. 28, no. 25, 2016, pp. 5106 – 5111. DOI 10.1002/adma.201600202

  6. Jźwikowski Krzysztof: Numerical Langevine-like method for modelling the noise currents in semiconductors. Int. Conf. on Numerical Simulation of Optoelectronic Devices (NUSOD), 2016, pp. 117 – 118. DOI 10.1109/NUSOD.2016.7547058

  7. Rupam Goswami, Brinda Bhowmick, Srimanta Baishya: Effect of scaling on noise in Circular Gate TFET and its application as a digital inverter. Microelectronics J., Vol. 53, 2016, pp. 16 – 24. https://doi.org/10.1016/j.mejo.2016.04.009

  8. Ghosh M., Ghosh S., Acharyya A.: Self-consistent quantum drift-diffusion model for multiple quantum well IMPATT diodes. J. of Computational Electronics, Vol. 15, no. 4, 2016, pp. 1370 – 1387. DOI 10.1007/s10825-016-0894-2

  9. Ramya Adicherla: Modeling Drift-Diffusion Mechanism of Carries in Compound Semiconductor Materials for High Speed Analog or Digital Circuits. Int. J. of Scientific Engineering and Technology Research (IJSETR), Vol. 4, no. 38, 2015, pp. 8244 – 8248.

  10. Ciura Ł., Kolek A., Zawiślak Z., et al.: Absence of 1/f noise from diffusion and generation-recombination currents in p-i-n type-II superlattice MWIR detector. Int. Conf. on Noise and Fluctuations (ICNF), 2015. DOI 10.1109/ICNF.2015.7288596

  11. Gert-Jan A.H., Wetzelaer, Paul W.M. Blom: Diffusion-driven currents in organic-semiconductor diodes. NPG Asia Materials, Vol. 6, 2014, Article # e110. DOI 10.1038/am.2014.41

  12. Buccella P., Stefanucci C., Sallese J.M., Kayal M.: SPICE simulation of substrate minority carriers propagation with equivalent electrical circuit. Proc. of the 21st Int. Conf. Mixed Design of Integrated Circuits and Systems (MIXDES), 2014, pp. 347 – 350. DOI 10.1109/MIXDES.2014.6872215

  13. Barnes M.: Terahertz emission from ultrafast lateral diffusion currents within semiconductor devices. University of Southampton, Physical Sciences and Engineering, Doctoral Thesis, 2014, 91 pages.

  14. Amit Singhal, Ranjan K. Mallik, Brejesh Lall: Effect of Molecular Noise in Diffusion-Based Molecular Communication. IEEE Wireless Communications Lett., 2014, Vol. 3, no. 5, pp. 489 – 492. DOI 10.1109/LWC.2014.2345756

  15. Palenskis V., Pralgauskaitė S., Maknys K., Matulionis A.: Thermal noise and drift mobility of randomly moving electrons in homogeneous materials with highly degenerate electron gas. 22nd Int. Conf on Noise and Fluctuations (ICNF), 2013, pp. 1 – 4. DOI 10.1109/ICNF.2013.6578917

  16. Tanaka A., Takahashi R.: Diffusion noise suppression by crystal-shape subtraction array. Proc. of Asia Pacific Signal and Information Processing Association Annual Summit and Conf., 2012, pp. 1 – 4. INSPEC Accession Number: 13245745.

  17. Buscemi F., Piccinini E., Rudan M., Brunetti R., Jacoboni C.: Diffusion and High-Frequency Noise of Electrons in Amorphous Semiconductors at Low Electric Fields. Fluctuation & Noise Lett., Vol. 11, no. 3, Special no. SI, 2012, Article # 1242004. DOI 10.1142/S0219477512420047

  18. Rocha P.R.F., Gomes H.L.l, Vandamme L.K.J., Chen Q., Kiazadeh A., de Leeuw D.M., Meskers S.C.J.: Low-Frequency Diffusion Noise in Resistive-Switching Memories Based on Metal-Oxide Polymer Structure. IEEE Trans on ED, Vol. 59, no. 9, 2012, pp. 2483 – 2487. DOI 10.1109/TED.2012.2204059

  19. Nougier J.P., Varani L.: Noise and diffusion of hot carriers in semiconductor materials and devices. 21st Int. Conf. on Noise and Fluctuations (ICNF), 2011, pp 1 – 8. DOI 10.1109/ICNF.2011.5994299

  20. Sungjae Lee, Webb K.J: A Correlated Diffusion Noise Model for the Field-Effect Transistor. IEEE Trans on CAD of Integrated Circuits and Systems, Vol. 26, no 10, 2007, pp. 1782-1789 DOI 10.1109/TCAD.2007.895770

  21. Zocchi F. E: Generation-recombination and thermal noise coupling in the drift-diffusion mode. Journal of Applied Physics, vol 102, no. 10, 2007, pp. 103712 – 103712-5. DOI 10.1063/1.2811847

  22. Moktadir Z, van Honschoten J. W, Elwenspoek M: Long range diffusion noise in platinum microwires with metallic adhesion layers. Applied Physics Letters, Vol. 90, no 23, 2007, pp. 233506 – 233506-3. DOI 10.1063/1.2746961

  23. Otten F, Kish L. B, Granqvist C.-G, Vandamme L. K. J, Vajtai R, Kruis F. E, Fissan H: Charge diffusion noise in monocrystalline PbS nanoparticle films. Applied Physics Letters, Vol. 77, no 21, 2000, pp. 3421 – 3422. DOI 10.1063/1.1327614

  24. Gomila G., Bulashenko O. M., Rubi J. M: Local noise analysis of a Schottky contact: Combined thermionic-emission–diffusion theory. Journal of Applied Physics, vol 83, no. 5, 1998, pp. 2619 – 2630. DOI 10.1063/1.367024

  25. Wu Y, Niu G.F, Ruan G: Monte Carlo simulation of diffusion noise in AlGaAs/InGaAs/GaAs hetero-structure. Conf Proc. Seventh Int. Conf on Indium Phosphide and Related Materials, pp. 401-403, 1995 DOI 10.1109/ICIPRM.1995.522164

  26. Yeom K., Hinckley J. M., Singh J.: The effect of strain on hot‐electron and hole longitudinal diffusion and noise in Si and Si0.9Ge0.1. Journal of Applied Physics, Vol. 78, no. 9, pp. 5454-5459, Nov 1995 DOI 10.1063/1.359660

  27. Mateos J., Gonzalez T., Pardo D.: Influence of spatial correlations on the analysis of diffusion noise in submicron semiconductor structures. Applied Physics Letters, Vol. 67, no 5, 1995, pp. 685 – 687. DOI 10.1063/1.115203

  28. Ghione G, Wang B, Curow M: Comments on numerical large-signal simulation of the diffusion noise in GaAs Gunn devices' [and reply]. IEEE Trans on ED, Vol. 40, no 10, 1993, pp. 1902 – 1903. DOI 10.1109/16.277358

  29. Wang B, Curow M: Numerical large-signal simulation of the diffusion noise in GaAs Gunn devices., IEEE Trans on ED, Vol. 39, no 9, 1992, pp. 2176 – 2178. DOI 10.1109/16.155890

  30. Li Z.-M, McAlister S.P, Day D.J: Analytical model of low-frequency diffusion noise in GaAs MESFETs. IEEE Trans on ED, Vol. 38, no 2, 1991, pp. 232 – 236. DOI 10.1109/16.69899

  31. Brunetti R., Goodnick S. M: A Monte Carlo Analysis of Diffusion-Noise Properties in GaAs-AlGaAs Quantum Wells. 17th European Solid State Device Research Conf, (ESSDERC '87), 1987, pp. 181 – 184. Print ISBN: 0444704779

  32. Duh K.H, Zhu X.C, van der Ziel A: Low-frequency diffusion noise in GaAs MESFET's. IEEE ED Letters, Vol. 5, no 6, 1984, pp. 202 – 204. DOI 10.1109/EDL.1984.25887

  33. Grondin R.O., Blakey P.A., East J.R., Rothman E.D.: Monte Carlo estimation of hot carrier noise at millimeter- and submillimeter-wave frequencies. IEEE Trans on ED, vol. 28, no. 8, 1981, pp. 914 – 923. DOI 10.1109/T-ED.1981.20459

  34. Huang C.H, van der Ziel A, van Vliet K.M: Diffusion noise in double-injection diodes in the ohmic relaxation regime. Electronics Letters, Vol. 7, no 11, 1971, pp. 291 – 292. DOI 10.1049/el:19710201

  35. de Murcia M., Gasquet D., Elamri A., Nougier J.-P., Vanbremeersch J: Diffusion and noise in GaAs material and devices. IEEE Trans on ED, vol 38, no. 11, 1991, pp. 2531 – 2539. DOI 10.1109/16.97419

  36. Nougier J. P.: Identity between spreading and noise diffusion coefficients for hot carriers in semiconductors. Applied Physics Letters, Vol. 32, no. 10, 1978, pp. 671 – 673. DOI 10.1063/1.89850

Back to top list

     

    Electrochemical noise

  1. Da-Hai Xia, Chao Ma, Shizhe Song, Lili Ma, Jihui Wang, Zhiming Gao, Cheng Zhong, Wenbin Hu: Assessing atmospheric corrosion of metal by a novel electrochemical sensor combining with a thin insulating net using electrochemical noise technique. Sensors and Actuators B Chemical, 2017, Vol. 252, pp. 353 – 358. https://doi.org/10.1016/j.snb.2017.05.179

  2. Caines S., Khan F., Zhang Yahui, et al.: Simplified electrochemical potential noise method to predict corrosion and corrosion rate. J. of Loss Prevention in the Process Industries, Vol. 47, 2017, pp. 72 – 84. DOI 10.1016/j.jlp.2017.02.023 fkhan@mun.ca

  3. Chao Ma, Shizhe Song, Zhiming Gao, Jihui Wang, Wenbin Hu, Yashar Behnamian, Da-Hai Xia: Electrochemical Noise Monitoring of the Atmospheric Corrosion of Steels- Identifying Corrosion Form Using Wavelet Analysis. Corrosion Engineering science and Technology, Vol. 52, no. 6, 2017, pp. 432 – 440. http://dx.doi.org/10.1080/1478422X.2017.1320117

  4. Caines S., Khan F., Shirokoff J., et al.: Demonstration of increased corrosion activity for insulated pipe systems using a simplified electrochemical potential noise method. J. of Loss Prevention in the Process Industries, Vol. 47, 2017, pp. 189 – 202. DOI 10.1016/j.jlp.2017.03.012

  5. Denisov E.S., Evdokimov Y.K., Martemianov S., et al.: Electrochemical Noise as a Diagnostic Tool for PEMFC. Fuel Cells, Vol. 17, no. 2, Special Issue: SI, 2017, pp. 225 – 237. DOI 10.1002/fuce.201600077

  6. Meng F., Liu Li, Li Ying, et al.: Studies on electrochemical noise analysis of an epoxy coating/metal system under marine alternating hydrostatic pressure by pattern recognition method. Progress in Organic Coatings, Vol. 105, 2017, pp. 81 – 91. DOI 10.1016/j.porgcoat.2016.11.025

  7. Ehsani A., Mahjani M.G., Hosseini M., et al.: Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory. J. of Colloid and Interface Science, Vol. 490, 2017, pp. 444 – 451. DOI 10.1016/j.jcis.2016.11.048

  8. Astafev E.A., Ukshe A.E., Manzhos R.A., et al.: Flicker Noise Spectroscopy in the Analysis of Electrochemical Noise of Hydrogen-air PEM Fuel Cell During its Degradation. Int. J. of Electrochemical Science, Vol. 12, no. 3, 2017, pp. 1742 – 1754. DOI 10.20964/2017.03.56

  9. Grafov B.M., Dobrovolskii Yu. A., Klyuev A.L., et al.: Median Chebyshev spectroscopy of electrochemical noise. J. of Solid State Electrochemistry, Vol. 21, no. 3, 2017, pp. 915 – 918. DOI 10.1007/s10008-016-3395-0

  10. Maizia R., Dib A., Thomas A., Martemianov S.: Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise. J. of Power Sources, Vol. 342, 2017, pp. 553 – 561. DOI 10.1016/j.jpowsour.2016.12.053

  11. Ramos R., Valdez-Salas B., Zlatev R., et al.: The Discrete Wavelet Transform and Its Application for Noise Removal in Localized Corrosion Measurements. Int. J. of Corrosion, 2017. DOI 10.1155/2017/7925404

  12. Zhao Ru, Xia Da-Hai, Song Shi-Zhe, et al.: Detection of SCC on 304 stainless steel in neutral thiosulfate solutions using electrochemical noise based on chaos theory. Anti-Corrosion Methods and Materials, Vol. 64, no. 2, 2017, pp. 241 – 251. DOI 10.1108/ACMM-10-2015-1581

  13. Far S.H. Ettefagh, Davoodi A.: Galvanic corrosion behavior of plain carbon steel-B4C composite in 3.5% NaCl solution with electrochemical noise. J. of Central South University, Vol. 24, no. 1, 2017, pp. 1 – 8. DOI 10.1007/s11771-017-3402-3

  14. Homborg A.M., Cottis R.A., Mol J.M.C.: An integrated approach in the time, frequency and time-frequency domain for the identification of corrosion using electrochemical noise. Electrochimica Acta, Vol. 222, 2016, pp. 627 – 640. DOI 10.1016/j.electacta.2016.11.018

  15. Hoseinieh S.M., Homborg A.M., Shahrabi T., et al.: A Novel Approach for the Evaluation of Under Deposit Corrosion in Marine Environments Using Combined Analysis by Electrochemical Impedance Spectroscopy and Electrochemical Noise. Electrochimica Acta, Vol. 217, 2016, pp. 226 – 241. DOI 10.1016/j.electacta.2016.08.146

  16. Grafov B.M.: Stochastic Description of Electrochemical Discharge Using Formalism of Kramers-Moyal Expansion. Russian J. of Electrochemistry, Vol. 52, no. 12, 2016, pp. 1179 – 1182. DOI 10.1134/S1023193516120053

  17. Jamali S.S., Zhao Yue, Gao Zhiming, et al.: In situ evaluation of corrosion damage using non-destructive electrochemical measurements - A case study. J. of Industrial & Engineering Chemistry, Vol. 43, 2016, pp. 36 – 43. DOI 10.1016/j.jiec.2016.07.045

  18. Dahai Xia, Shizhe Song, Y. Behnamian: Detection of corrosion degradation using electrochemical noise (EN): review of signal processing methods for identifying corrosion forms. Corrosion Engineering, Science and Technology, Vol. 51, no. 7, 2016, pp. 527 – 544. http://dx.doi.org/10.1179/1743278215Y.0000000057

  19. Zhao Y., Wang X., Huang J.C., et al.: Affection of Cu content on the phase evolution during the dealloying of Ag-Cu alloys using electrochemical noise with Hilbert spectra analysis. Materials Lett., Vol. 183, 2016, pp. 165 – 169. DOI 10.1016/j.matlet.2016.07.116

  20. Ashassi-Sorkhabi H., Seifzadeh D., Raghibi-Boroujeni M.: Analysis of electrochemical noise data in both time and frequency domains to evaluate the effect of ZnO nanopowder addition on the corrosion protection performance of epoxy coatings. Arabian J. of Chemistry, Vol. 9, Supplement: 2, 2016, pp. S1320 – S1327. DOI 10.1016/j.arabjc.2012.02.018

  21. Hou Y., Aldrich C., Lepkova K., et al.: Monitoring of carbon steel corrosion by use of electrochemical noise and recurrence quantification analysis. Corrosion Science, Vol. 112, 2016, pp. 63 – 72. DOI 10.1016/j.corsci.2016.07.009

  22. Klyuev A.L., Davydov A.D., Grafov B.M., et al.: Electrochemical noise spectroscopy: Method of secondary Chebyshev spectrum. Russian J. of Electrochemistry, Vol. 52, no. 10, 2016, pp. 1001 – 1005. DOI 10.1134/S1023193516100062

  23. Mendoza Morales Diego, Cuevas Arteaga Cecilia: Determination of the Corrosion Resistance of SS-304 in Synthetic Seawater at Two Temperatures Using Electrochemical Noise and Polarization Curves. Int. J. of Electrochemical Science, Vol. 11, no. 10, 2016, pp. 8683 – 8696. DOI 10.20964/2016.10.28

  24. Kannan Perumal, Rao Toleti Subba, Rajendran Nallaiyan: Anti-corrosion behavior of benzimidazoliumtetrafluroborate ionic liquid in acid medium using electrochemical noise technique. J. of Molecular Liquids, Vol. 222, 2016, pp. 586 – 595. DOI 10.1016/j.molliq.2016.07.116

  25. Ehsani A., Shiri H.M., Mahjani M.G., et al.: Theoretical, common electrochemical and electrochemical noise investigation of inhibitory effect of new organic compound nanoparticles in the corrosion of stainless steel in acidic solution. Trans of the Indian Institute of Metals, Vol. 69, no. 8, 2016, pp. 1519 – 1527. DOI 10.1007/s12666-015-0724-4

  26. Rubio M.A., Bethune K., Urquia A., et al.: Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise. Int. J. of Hydrogen Energy, Vol. 41, no. 33, 2016, pp. 14991 – 15001. DOI 10.1016/j.ijhydene.2016.05.292

  27. Nagiub A.M.: Electrochemical Noise Analysis of Different Herbal Compounds for Copper Exposed to Chloride Media. Int. J. of Electrochemical Science, Vol. 11, no. 9, 2016, pp. 7861 – 7874. DOI 10.20964/2016.09.19

  28. Hermoso-Diaz I.A., Gonzalez-Rodriguez J.G., Uruchurtu-Chavarin J.: Use of EIS and Electrochemical Noise Fractal Analysis to Study Salvia hispanica as Green Corrosion Inhibitor for Carbon Steel. Int. J. of Electrochemical Science, Vol. 11, no. 6, 2016, pp. 4253 – 4266. DOI 10.20964/2016.06.47

  29. Cottis R.A., Homborg A.M., Mol J.M.C.: The relationship between spectral and wavelet techniques for noise analysis. Electrochimica Acta, Vol. 202, 2016, pp. 277 – 287. DOI 10.1016/j.electacta.2015.11.148

  30. Singh Pradyumna S., Lemay S.G.: Stochastic Processes in Electrochemistry. Analytical Chemistry, Vol. 88, no. 10, 2016, pp. 5017 – 5027. DOI 10.1021/acs.analchem.6b00683

  31. Rocha P.R.F., Schlett P., Kintzel U., et al.: Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations. Scientific Reports, Vol. 6, 2016, Article # 34843. DOI 10.1038/srep34843

  32. Grafov B.M.: Theory of the first encounter with the boundary by a stochastic diffusion process in an equilibrium electrochemical RC-circuit. Russian J. of Electrochemistry, Vol. 52, no. 9, 2016, pp. 885 – 889. DOI 10.1134/S1023193516090044

  33. Grafov B.M.: The fractal theory of electrochemical diffusion noise: Correlations of the third and fourth order. Russian J. of Electrochemistry, Vol. 52, no. 3, 2016, pp. 220 – 225. DOI 10.1134/S1023193516030046

  34. Wei Yong-Jia, Xia Da-Hai, Song Shi-Zhe: Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis. Russian J. of Electrochemistry, Vol. 52, no. 6, 2016, pp. 560 – 575. DOI 10.1134/S1023193516060124

  35. Sina S. Jamali, Mills D.J., Cottis R.A., Tian Yang Lan: Analysis of electrochemical noise measurement on an organically coated metal. Progress in Organic Coatings, Vol. 96, 2016, pp. 52 – 57. https://doi.org/10.1016/j.porgcoat.2016.01.017

  36. Wang Yafei, Cheng Guangxu: Quantitative evaluation of pit sizes for high strength steel: Electrochemical noise, 3-D measurement, and image-recognition-based statistical analysis. Materials & Design, Vol. 94, 2016, pp. 176 – 185. DOI 10.1016/j.matdes.2016.01.016

  37. Castillo Morquecho C.P., Lopez Melendez C., Esparza Ponce H.E., et al.: Evaluation and Characterization of Thin Films on AISI 9840 by Electrochemical Noise. Int. J. of Electrochemical Science, Vol. 10, no. 2, 2015, pp. 1094 – 1101.

  38. Grafov B.M.: Fokker-Planck equations for stochastic diffusion associated with Markovian electrochemical noise. Russian J. of Electrochemistry, Vol. 51, no. 3, 2015, pp. 278 – 280. DOI 10.1134/S1023193515030064

  39. Klyuev A.L., Grafov B.M., Dobrovolskii Yu. A., et al.: Variability of discrete Chebyshev spectra of electrochemical noise. Russian J. of Electrochemistry, Vol. 51, no. 12, 2015, pp. 1180 – 1185. DOI 10.1134/S1023193515120071

  40. Yakdi N., Huet F., Ngo K.: In-situ particle sizing at millimeter scale from electrochemical noise: simulation and experiments. Electrochimica Acta, Vol. 180, 2015, pp. 1050 – 1058. DOI 10.1016/j.electacta.2015.09.051

  41. Wang Ke, Wang Jihui, Hu Wenbin: Evaluation of temperature effect on the corrosion process of 304 stainless steel in high temperature water with electrochemical noise. Materials & Design, Vol. 82, 2015, pp. 155 – 163. DOI 10.1016/j.matdes.2015.05.044

  42. Martemianov S., Adiutantov N., Evdokimov Yu.K., et al.: New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries. J. of Solid State Electrochemistry, Vol. 19, no. 9, Special Issue: SI, 2015, pp. 2803 – 2810. DOI 10.1007/s10008-015-2855-2

  43. Girija S., Nandakumar T., Mudali U. Kamachi: Effect of nitrogen on corrosion behaviour of 304LN SS in nitric acid and simulated high level waste by electrochemical noise. Corrosion Engineering Science & Technology, Vol. 50, no. 5, 2015, pp. 397 – 411. DOI 10.1179/1973947814Y.0000000227

  44. Xia Da-Hai, Behnamian Yashar: Electrochemical noise: a review of experimental setup, instrumentation and DC removal. Russian J. of Electrochemistry, Vol. 51, no. 7, 2015, pp. 593 – 601. DOI 10.1134/S1023193515070071

  45. Curioni M., Monetta T., Bellucci F.: Modeling data acquisition during electrochemical noise measurements for corrosion studies. Corrosion Reviews, Vol. 33, no. 3-4, 2015, pp. 187 – 194. DOI 10.1515/corrrev-2014-0047

  46. Rios Emerson C., Zimer Alexsandro M., Mendes Paulo C.D., et al.: Corrosion of AISI 1020 steel in crude oil studied by the electrochemical noise measurements. Fuel, Vol. 150, 2015, pp. 325 – 333. DOI 10.1016/j.fuel.2015.02.022

  47. Grafov B.M., Dobrovolskii Yu.A., Davydov A.D., et al.: Electrochemical noise diagnostics: Analysis of algorithm of orthogonal expansions. Russian J. of Electrochemistry, Vol. 51, no. 6, 2015, pp. 503 – 507. DOI 10.1134/S1023193515060063

  48. Grafov B.M.: Fractal Theory of Electrochemical Diffusion Noise. Russian J. of Electrochemistry, Vol. 51, no. 1, 2015, pp. 1 – 6. DOI 10.1134/S1023193515010073

  49. Casajus P., Winzer N.: Electrochemical noise analysis of the corrosion of high-purity Mg-Al alloys. Corrosion Science, Vol. 94, 2015, pp. 316 – 326. DOI 10.1016/j.corsci.2015.02.014

  50. Li Jian, Zheng Huan-Jun, Zheng Ye, et al.: A New Information Method to Determinate Corrosion Types from Electrochemical Noise. Acta Metallurgica Sinica - English Lett., Vol. 28, no. 4, 2015, pp. 449 – 453. DOI 10.1007/s40195-015-0216-x

  51. Toppo A., Pujar M.G., Mallika C., et al.: Effect of Nitrogen on Stress Corrosion Behavior of Austenitic Stainless Steels Using Electrochemical Noise Technique. J. of Materials Engineering & Performance, Vol. 24, no. 3, 2015, pp. 1140 – 1149. DOI 10.1007/s11665-014-1381-1

  52. Rincon Rosalba A., Battistel A., Ventosa E., et al.: Using Cavity Microelectrodes for Electrochemical Noise Studies of Oxygen-Evolving Catalysts. ChemSusChem, Vol. 8, no. 3, 2015, pp. 560 – 566. DOI 10.1002/cssc.201402855

  53. Mehdipour M., Ramezanzadeh B., Arman S.Y.: Electrochemical noise investigation of Aloe plant extract as green inhibitor on the corrosion of stainless steel in 1 M H2SO4. J. of Industrial & Engineering Chemistry, Vol. 21, 2015, pp. 318 – 327. DOI 10.1016/j.jiec.2014.02.041

  54. Li Jian, Zheng Huanjun, Wang Ke, et al.: Corrosion Behavior of SS-304 in NaCl Solution at Different Temperatures Using Electrochemical Noise Technique. Int. J. of Electrochemical Science, Vol. 10, no. 1, 2015, pp. 931 – 937. ISSN: 1452-3981

  55. Bahrami M.J., Shahidi M., Hosseini S.M.A.: Comparison of electrochemical current noise signals arising from symmetrical and asymmetrical electrodes made of Al alloys at different pH values using statistical and wavelet analysis. Part I: Neutral and acidic solutions. Electrochimica Acta, Vol. 148, 2014, pp. 127 – 144. DOI 10.1016/j.electacta.2014.10.031

  56. Bahrami M.J., Hosseini S.M.A., Shahidi M.: Comparison of electrochemical current noise signals arising from symmetrical and asymmetrical electrodes made of Al alloys at different pH values using statistical and wavelet analysis. Part II: Alkaline solutions. Electrochimica Acta, Vol. 148, 2014, pp. 249 – 260. DOI 10.1016/j.electacta.2014.10.029

  57. Ortiz Alonso C.J., Lucio-Garcia M.A., Hermoso-Diaz I.A., et al.: Detection of Sulfide Stress Cracking in a Supermartensitic Stainless Steel by Using Electrochemical Noise. Int. J. of Electrochemical Science, Vol. 9, no. 12, 2014, pp. 6717 – 6733. ISSN: 1452-3981

  58. Perez-Quiroz J.T., Alonso-Guzman E.M., Martinez-Molina W., et al.: Electrochemical Behavior of the Welded Joint Between Carbon Steel and Stainless Steel by Means of Electrochemical Noise. Int. J. of Electrochemical Science, Vol. 9, no. 12, 2014, pp. 6734 – 6750. ISSN: 1452-3981

  59. Fernandez D., Maurer P., Martine M., et al.: Bubble Formation at a Gas-Evolving Microelectrode. Langmuir, Vol. 30, no. 43, 2014, pp. 13065 – 13074. DOI 10.1021/la500234r

  60. Moshrefi R., Mahjani M.G., Jafarian M.: Application of wavelet entropy in analysis of electrochemical noise for corrosion type identification. Electrochemistry Communications, Vol. 48, 2014, pp. 49 – 51. DOI 10.1016/j.elecom.2014.08.005

  61. Arenas M.A., Conde A., de Frutos A., de Damborenea J.J.: Electrochemical noise measurements of AISI 316L during wear in simulated physiological media. Corrosion Engineering Science & Technology, Vol. 49, no. 7, 2014, pp. 656 – 660. DOI 10.1179/1743278214Y.0000000167

  62. Homborg A.M., Tinga T., van Westing E.P.M., et al.: A Critical Appraisal of the Interpretation of Electrochemical Noise for Corrosion Studies. Corrosion, Vol. 70, no. 10, 2014, pp. 971 – 987. DOI 10.5006/1277

  63. Shi Jiang-Bo, Wang Ji-Hui, Wang Ke, et al.: Electrochemical Noise Study on the Corrosion Behavior of 304NG Stainless Steel in High Temperature Water. Electrochemistry, Vol. 82, no. 8, 2014, pp. 647 – 653. DOI 10.5796/electrochemistry.82.647

  64. Homborg A.M., Morales C.F. Leon, Tinga T., et al.: Detection of microbiologically influenced corrosion by electrochemical noise transients. Electrochimica Acta, Vol. 136, 2014, pp. 223 – 232. DOI 10.1016/j.electacta.2014.05.102

  65. Upadhyay Namrata, Pujar M.G., Das C.R., et al.: Pitting Corrosion Studies on Solution-Annealed Borated Type 304L Stainless Steel Using Electrochemical Noise Technique. Corrosion, Vol. 70, no. 8, 2014, pp. 781 – 795. DOI 10.5006/1098

  66. Grafov B.M.: On the measure of non-gaussianity of a nearly Gaussian noise. Russian J. of Electrochemistry, Vol. 50, no. 5, 2014, pp. 490 – 495. DOI 10.1134/S1023193514050061

  67. Grafov B.M.: The Kramers-Moyal Expansion for Electrochemical Stochastic Diffusion. Russian J. of Electrochemistry, Vol. 50, no. 1, 2014, pp. 92 – 94. DOI 10.1134/S1023193514010042

  68. Guan L., Zhang B., Wang J.Q., et al.: The reliability of electrochemical noise and current transients characterizing metastable pitting of Al-Mg-Si microelectrodes. Corrosion Science, Vol. 80, 2014, pp. 1 – 6. DOI 10.1016/j.corsci.2013.11.008

  69. Gaona-Tiburcio C., Aguilar L.M.R., Zambrano Robledo P., et al.: Electrochemical Noise Analysis of Nickel Based Superalloys in Acid Solutions. Int. J. of Electrochemical Science, Vol. 9, no. 2, 2014, pp. 523 – 533. ISSN: 1452-3981

  70. Homborg A.M., van Westing E.P.M., Tinga T., et al.: Application of transient analysis using Hilbert spectra of electrochemical noise to the identification of corrosion inhibition. Electrochimica Acta, Vol. 116, 2014, pp. 355 – 365. DOI 10.1016/j.electacta.2013.11.084

  71. Arman S.Y., Naderi R., Markhali B.P.: Effect of DC trend removal and window functioning methods on correlation between electrochemical noise parameters and EIS data of stainless steel in an inhibited acidic solution. RSC Advances, Vol. 4, no. 73, 2014, pp. 39045 – 39057. DOI 10.1039/c4ra04026k

  72. Chandrasatheesh C., Jayapriya J., George R.P., et al.: Detection and analysis of microbiologically influenced corrosion of 316 L stainless steel with electrochemical noise technique. Engineering Failure Analysis, Vol. 42, 2014, pp. 133 – 142. DOI 10.1016/j.engfailanal.2014.04.002

  73. Jez M., Mitoraj M., Godlewska E., Jakubowska M., Bas B.: Evaluation of Corrosion Behaviour of Selected Metallic Samples by Electrochemical Noise Measurements. Journal of Solid State Electrochemistry, Vol. 18, no. 6, 2014, pp. 1635 – 1646. DOI 10.1007/s10008-014-2387-1

  74. Suresh Girija, Mudali U.K.: Electrochemical Noise Analysis of Pitting Corrosion of Type 304L Stainless Steel. Corrosion, Vol. 70, no. 3, 2014, pp. 283 – 293. DOI 10.5006/1003

  75. Jamali S.S., Mills D.J., Sykes J.M.: Measuring Electrochemical Noise of a Single Working Electrode for Assessing Corrosion Resistance of Polymer Coated Metals. Progress in Organic Coatings, Vol. 77, no. 3, 2014, pp. 733 – 741. DOI 10.1016/j.porgcoat.2013.12.014

  76. Markhali B.P., Naderi R., Mandavian M.: Characterization of Corrosion Inhibition Performance of Azole Compounds Through Power Spectral Density of Electrochemical Noise. Journal of Electroanalytical Chemistry, Vol. 714, 2014, pp. 56 – 62. DOI 10.1016/j.jelechem.2013.12.024

  77. Bosch R-W., Cottis R.A., Csecs K., et al.: Reliability of Electrochemical Noise Measurements: Results of Round-Robin Testing on Electrochemical Noise. Electrochimica Acta, Vol. 120, 2014, pp. 379 – 389. DOI 10.1016/j.electacta.2013.12.093

  78. Rathod R.C., Sapate S.G., Raman R., Rathod W.S.: Stress Corrosion Cracking Study of Aluminum Alloys Using Electrochemical Noise Analysis. J. of Materials Eng. & Performance, Vol. 22, no. 12, 2013, pp. 3801 – 3809. DOI 10.1007/s11665-013-0705-x

  79. Curioni M., Cottis R.A., Thompson G.E.: Application of Electrochemical Noise Analysis to Corroding Aluminium Alloys. Surface & Interface Analysis, Vol. 45, no. 10, 2013, pp. 1564 – 1569. DOI 10.1002/sia.5173

  80. Curioni M., Cottis R.A., Thompson G.E.: Interpretation of Electrochemical Noise Generated by Multiple Electrodes. Corrosion, Vol. 69, no. 2, 2013, pp. 158 – 166. DOI 10.5006/0701

  81. Homborg A.M., Tinga T., Zhang X., van Westing E.P.M., Oonincx P.J., Ferrari G.M., de Wit J.H.W., Mol J.M.C.: Transient Analysis Through Hilbert Spectra of Electrochemical Noise Signals for the Identification of Localized Corrosion of Stainless Steel. Electrochimica Acta, Vol. 104, 2013, pp. 84 – 93. DOI 10.1016/j.electacta.2013.04.085

  82. Shahidi M., Moghaddam R. Farrehi Gholamhosseinzadeh M.R., Hosseini S.M.A: Investigation of the cathodic process influence on the electrochemical noise signals arising from pitting corrosion of Al alloys using wavelet analysis. J. of Electroanalytical Chemistry, Vol. 693, 2013, pp. 114 121. DOI 10.1016/j.jelechem.2013.01.020

  83. Heyn A., Goellner J.: Analysis and Monitoring of Corrosion using Electrochemical Noise - 5(th) Part. Materials & Corrosion - Werkstoffe & Korrosion, Vol. 64, no. 8, 2013, pp. 663 – 663. DOI 10.1002/maco.201390020

  84. Safizadeh F., Ghali E.: Electrochemical Noise of Copper Anode Behaviour in Industrial Electrolyte Using Wavelet Analysis. Trans of Nonferrous Metals Society of China, Vol. 23, no. 6, 2013, pp. 1854 – 1862. DOI 10.1016/S1003-6326(13)62670-9

  85. Wang Xuehui, Wang Jihui, Fu Congwei, Gao Yingkun: Determination of Corrosion Type by Wavelet-Based Fractal Dimension from Electrochemical Noise. Int. J. of Electrochemical Science, Vol. 8, no. 5, 2013, pp. 7211 – 7222.

  86. Li Jian, Kong Weikang, Shi Jiangbo, Wang Ke, Wang Weikui, Zhao Weipu, Zeng Zhoumo: Determination of Corrosion Types from Electrochemical Noise by Artificial Neural Networks. Int. J. of Electrochemical Science, Vol. 8, no. 2, 2013, pp. 2365 – 2377.

  87. Nava-Dino C.G., Orozco-Carmona V.M., Monreal-Romero H.A., et al.: Fuzzy Sets and Electrochemical Noise to Predict Corrosion Behavior of Ti Alloys. Int. J. of Electrochemical Science, Vol. 8, no. 4, 2013, pp. 4996 – 5006.

  88. Macia L.F., Tourwe E., Pintelon R., Hubin A.: A New Modeling Method for Determining Electrochemical Parameters from LSV Experiments Using the Stochastic Noise. Part I: Theory and Validation. J. of Electroanalytical Chemistry, Vol. 690, 2013, pp. 127 – 135. DOI 10.1016/j.jelechem.2012.11.030

  89. Xia Dahai, Shi Jiangbo, Gong Wenqi, Zhou Rongji, Gao Zhiming, Wang Jihui: The Significance of Correlation Dimension Obtained from Electrochemical Noise. Electrochemistry, Vol. 80, no. 11, 2012, pp. 907 – 912. DOI 10.5796/electrochemistry.80.907

  90. Dahai Xia, Shizhe Song, Jihui Wang, Jiangbo Shi, Huichao Bi, Zhiming Gao: Determination of corrosion types from electrochemical noise by phase space reconstruction theory. Electrochemistry Communications, Vol. 15, no. 1, 2012, pp. 88 – 92. https://doi.org/10.1016/j.elecom.2011.11.032

  91. Rivera A L., Castano V.M.: Corrosion Analysis by Electrochemical Noise: A Teaching Approach. J. of Materials Education, Vol. 34, no. 5-6, 2012, pp. 151 – 159.

  92. Shahidi M., Jafari A.H., Hosseini S.M.A.: Comparison of Symmetrical and Asymmetrical Cells by Statistical and Wavelet Analysis of Electrochemical Noise Data. Corrosion, Vol. 68, no. 11, 2012, pp. 1003 – 1014. DOI 10.5006/0626

  93. Loto C.A.: Electrochemical Noise Measurement Technique in Corrosion Research. Int. J. of Electrochemical Science, Vol. 7, no. 10, 2012, pp. 9248 – 9270.

  94. Homborg A.M., Tinga T., Zhang X., van Westing E.P.M., Oonincx P.J., de Wit J.H.W., Mol J.M.C.: Time-Frequency Methods for Trend Removal in Electrochemical Noise Data. Electrochimica Acta, Vol. 70, 2012, pp. 199 – 209. DOI 10.1016/j.electacta.2012.03.062

  95. Ritter S., Huet F., Cottis R.A.: Guideline for an Assessment of Electrochemical Noise Measurement Devices. Materials & Corrosion - Werkstoffe & Korrosion, Vol. 63, no. 4, 2012, pp. 297 – 302. DOI 10.1002/maco.201005839

  96. Wei Shicheng, Yi Liang, Yi Liu, Wang Yujing, Xu Binshi: Research of Electrochemical Noise Technology on Corrosion Resistance. Rare Metal Materials & Engineering, Vol. 41, Supplement: 1, 2012, pp. 164 – 167.

  97. Xia Dahai, Song Shizhe, Wang Jihui, Shi Jiangbo , Bi Huichao , Gao Zhiming: Determination of Corrosion Types from Electrochemical Noise by Phase Space Reconstruction Theory. Electrochemistry Communications, Vol. 15, no. 1, 2012, pp. 88 – 92. DOI 10.1016/j.elecom.2011.11.032

  98. Montesperelli G., Gusmano G.: Electrochemical Noise for Corrosion Detection. Corrosion Reviews, Vol. 29, no. 5-6, Special no. SI, 2011, pp. 247 – 252. DOI 10.1515/CORRREV.2011.012

  99. Kim Jong Jip: Interpretation of Electrochemical Noise by Wavelet Transform and Fractal Analysis. Metals & Materials Int., Vol. 17, no. 5, 2011, pp. 777 – 782. DOI 10.1007/s12540-011-1013-3

  100. Grafov B.M.: Gibbs Fluctuation Theory in the Context of Electrochemical Equilibrium Noise. Pure & Applied Chemistry, Vol. 83, no. 2, 2011, pp. 253 – 257. DOI 10.1351/PAC-CON-10-07-10

  101. Muniandy S.V., Chew W.X., Kan C.S.: Multifractal Modelling of Electrochemical Noise in Corrosion of Carbon Steel. Corrosion Science, Vol. 53, no. 1, 2011, pp. 188 – 200. DOI 10.1016/j.corsci.2010.09.005

  102. Kim Jong Jip: Electrochemical Noise Analysis of Localized Corrosion by Wavelet Transform. Metals & Materials Int., Vol. 16, no. 5, 2010, pp. 747 – 753. DOI 10.1007/s12540-010-1008-5

  103. Huang J.Y., Qiu Y.B., Guo X.P.: Comparison of Polynomial Fitting and Wavelet Transform to Remove Drift in Electrochemical Noise Analysis. Corrosion Eng. Science & Technology, Vol. 45, no. 4, 2010, pp. 288 – 294. DOI 10.1179/147842208X338956

  104. Soltis J., Krouse D.P., Laycock N.J., Zavadil, K. R.: Automated Processing of Electrochemical Current Noise in the Time Domain: I. Simulated Signal. Corrosion Science, Vol. 52, no. 3, 2010, pp. 838 – 847. DOI 10.1016/j.corsci.2009.11.007

  105. Safizadeh F., Lafront A.-M., Ghali E., Houlach G.: Monitoring the Quality of Copper Deposition by Statistical and Frequency Analyses of Electrochemical Noise. Hydrometallurgy, Vol. 100, no. 3-4, 2010, pp. 87 – 94. DOI 10.1016/j.hydromet.2009.10.005

  106. Smith M.T., Macdonald D.D.: Wavelet Analysis of Electrochemical Noise Data. Corrosion, Vol. 65, no. 7, 2009, pp. 438 – 448.

  107. Kim Jong Jip: On the Determination of Electrochemical Noise Resistance. Metals & Materials Int., Vol. 15, no. 2, 2009, pp. 279 – 283. DOI 10.1007/s12540-009-0279-1

  108. Huang J.Y., Qiu Y.B., Guo X.P.: Cluster and Discriminant Analysis of Electrochemical Noise Statistical Parameters. Electrochimica Acta, Vol. 54, no. 8, 2009, pp. 2218 – 2223. DOI 10.1016/j.electacta.2008.10.039

  109. H. S. Klapper, J. Goellner: Electrochemical noise from oxygen reduction on stainless steel surfaces. Corrosion Science, Vol 51, 2009, pp 144 – 150. doi:10.1016/j.corsci.2008.10.009

  110. Jun Zhan, Xiaofang Liu, Qian Zhang, Qingjie Liu, Feng Long: Chaos analysis of the influence of tensile stress on electrochemical noise. Int. Conf. on Industrial Mechatronics and Automation (ICIMA 2009), 2009, pp 418 – 421. DOI 10.1109/ICIMA.2009.5156652

  111. Hong Men, Caihong Wang, Yan Peng, Shanrang Yang, Zhiming Xu: Analysis of electrochemical noise based on wavelet signal de-nosing. IEEE Int. Conf. on Intelligent Computing and Intelligent Systems (ICIS 2009), Vol. 3, 2009, pp 248 – 252. DOI 10.1109/ICICISYS.2009.5358173

  112. Smulko J.M., Darowicki K., Zieliski A.: On Electrochemical Noise Analysis for Monitoring of Uniform Corrosion Rate. IEEE Trans. on Instrum. & Meas., Vol. 56, no 5, 2007, pp 2018 – 2023. DOI 10.1109/TIM.2007.895624

  113. Smulko J.: Novel Method of Local Corrosion Events Characterization by Electrochemical Noise Analysis. Proc. of the IEEE Instrum. & Meas. Technology Conf. (IMTC 2006), 2006, pp 706 – 709. DOI 10.1109/IMTC.2006.328142

  114. Jichun Zhang, Trombly N., Mason A.: A low noise readout circuit for integrated electrochemical biosensor arrays. Proc. of IEEE Sensors, Vol. 1, 2004, pp 36 – 39. DOI 10.1109/ICSENS.2004.1426093

  115. Planinsic P., Petek A.: Analysis of electrochemical noise signals with classical methods and methods based on fractal-like wavelets. 2003 IEEE Int. Conf. on Industrial Technology, Vol. 2, 2003, pp 871 – 876. DOI 10.1109/ICIT.2003.1290773

  116. Lowe A., Eren H., Chun Che Fung: Detection of electrode asymmetry in electrochemical noise analysis. Proc of IEEE Region 10 Int. Conf. on Electrical and Electronic Technology, (TENCON), vol. 1, 2001, pp. 309 – 312. DOI 10.1109/TENCON.2001.949603

  117. Lowe A., Eren H., Tan Y.J., Kinsella B., Bailey S.: Continuous corrosion rate measurement by noise resistance calculation. IEEE Trans. on Instrum. & Meas., Vol. 50, no 5, 2001, pp 1059 – 1065. DOI 10.1109/19.963158

  118. Lowe A.M., Eren H.: Signal analysis and synthesis as applied to electrochemical noise in corrosion. Proc. TENCON 2000, Vol. 1, 2000, pp 240 – 245. DOI 10.1109/TENCON.2000.893578

  119. Leban M., Legat A., Dolecek V., Kuhar V.: Electrochemical noise as a possible method for detecting stress-corrosion cracking. Materials Science Forum (Volumes 289 – 292), Vol. Electrochemical Methods in Corrosion Research VI, 1998, pp 157 – 162. DOI 10.4028/www.scientific.net/MSF.289-292.157 

  120. Dodd C., Hodgson D.R.: Electrocatalysis, bubbles and noise. IEE Colloquium on Electrochemical Measurement, 1994, pp 9/1 – 9/2. INSPEC Accession Number: 4795738

  121. Brophy J. J., Smith S. W.: Current noise in sodium β‘ alumina ceramic. Journal of Applied Physics, Vol. 58, no 1, 1985, pp 351 – 354. DOI 10.1063/1.335683

  122. Brophy J. J., Smith S. W.: Electrode noise in beta aluminas. Journal of Applied Physics, Vol. 56, no 3, 1984, pp 801 – 805. DOI 10.1063/1.334010

     

    Back to top list

     

    G-R noise

  1. Yue Long, Yang Shaohua, Liu Yuan, et al.: 170 keV Proton radiation effects on low-frequency noise of bipolar junction transistors. Radiation Effects and Defects in Solids, Vol. 172, no. 3-4, 2017, pp. 313 – 322. DOI 10.1080/10420150.2017.1313843

  2. Oliveira A.V., Simoen E., Mitard J., et al.: GR-Noise Characterization of Ge pFinFETs With STI First and STI Last Processes. IEEE ED Lett., Vol. 37, no. 9, 2016, pp. 1092 – 1095. DOI 10.1109/LED.2016.2595398

  3. Hu Wei, Zhuang Yiqi, Bao Junlin, et al.: Total dose effects on the G-R noise of JFET transistors. J. of Semiconductors, Vol. 37, no. 3, 2016, Article # UNSP 034005. DOI 10.1088/1674-4926/37/3/034005

  4. Jozwikowski K., Jozwikowska A., Martyniuk A.: Dislocations as a Noise Source in LWIR HgCdTe Photodiodes. J. of Electronic Materials, Vol. 45, no. 10, 2016, pp. 4769 – 4781. DOI 10.1007/s11664-016-4390-z

  5. Mukherjee C., Jacquet T., Chakravorty A., et al.: Low-Frequency Noise in Advanced SiGe:C HBTs-Part I: Analysis. IEEE Trans on ED, Vol. 63, no. 9, 2016, pp. 3649 – 3656. DOI 10.1109/TED.2016.2589159

  6. Mukherjee C., Jacquet T., Chakravorty A., et al.: Low-Frequency Noise in Advanced SiGe:C HBTs-Part II: Correlation and Modeling. IEEE Trans on ED, Vol. 63, no. 9, 2016, pp. 3657 – 3662. DOI 10.1109/TED.2016.2588318

  7. Cywinski G., Szkudlarek K., Kruszewski P., et al.: Low frequency noise in two-dimensional lateral GaN/AlGaN Schottky diodes. Applied Physics Lett., Vol. 109, no. 3, 2016, Article # 033502. DOI 10.1063/1.4958857

  8. Goswami R., Bhowmick B., Baishya S.: Effect of scaling on noise in Circular Gate TFET and its application as a digital inverter. Microelectronics J., Vol. 53, 2016, pp. 16 – 24. DOI 10.1016/j.mejo.2016.04.009

  9. Bhattacharyya S., Kandala A., Richardella A., et al.: Resistance noise in epitaxial thin films of ferromagnetic topological insulators. Applied Physics Lett., Vol. 108, no. 8, 2016, Article # 082101. DOI 10.1063/1.4942412

  10. Ko Young-Uk, Yun Ho-Jin, Jeong Kwang-Seok, et al.: Current-voltage and low-frequency noise analysis of heterojunction diodes with various passivation layers. Thin Solid Films, Vol. 598, 2016, pp. 109 – 114. DOI 10.1016/j.tsf.2015.12.009

  11. Djidjou T.K., Chen Ying, Basel Tek, et al.: Magnetic field enhancement of generation-recombination and shot noise in organic light emitting diodes. J. of Applied Physics, Vol. 117, no. 11, 2015, Article # 115501. DOI 10.1063/1.4914519

  12. Goswami R., Bhowmick B., Baishya S.: Electrical noise in Circular Gate Tunnel FET in presence of interface traps. Superlattices and Microstructures, Vol. 86, 2015, pp. 342 – 354. DOI 10.1016/j.spmi.2015.07.064

  13. Xuan Sang Nguyen, Lin Ke, Fitzgerald E.A., et al.: Correlation of a generation-recombination center with a deep level trap in GaN. Applied Physics Lett., Vol. 106, no. 10, 2015, Article # 102101. DOI 10.1063/1.4914393

  14. Nallatamby J.-C., Laurent S., Prigent M., et al.: Comprehensive analysis of GR noise in InGaP-GaAs HBT by physics-based simulation and low frequency characterization. J. of Computational Electronics, Vol. 14, no. 1, Special Issue: SI, 2015, pp. 4 – 14. DOI 10.1007/s10825-014-0639-z

  15. Bhattacharyya S., Banerjee M., Nhalil H., et al.: Bulk-Induced 1/f Noise at the Surface of Three-Dimensional Topological Insulators. ACS Nano, Vol. 9, no. 12, 2015, pp. 12529 – 12536. DOI 10.1021/acsnano.5b06163

  16. Ciura L., Kolek A., Wrobel J., et al.: 1/f Noise in Mid-Wavelength Infrared Detectors With InAs/GaSb Superlattice Absorber. IEEE Trans on ED, Vol. 62, no. 6, 2015, pp. 2022 – 2026. DOI 10.1109/TED.2015.2423555

  17. Wang Dang-Hui, Xu Tian-Han, Wang Rong, et al.: Research on emission transition mechanisms of InGaN/GaN multiple quantum well light-emitting diodes using low-frequency current noise. Acta Physica Sinica, Vol. 64, no. 5, 2015, Article # 050701. DOI 10.7498/aps.64.050701

  18. dos Santos S.D., Cretu B., Strobel V., et al.: Low-frequency noise assessment in advanced UTBOX SOI nMOSFETs with different gate dielectrics. Solid-State Electronics, Vol. 97, 2014, pp. 14 – 22. DOI 10.1016/j.sse.2014.04.034

  19. Sharma Deepak, Amani Matin, Motayed Abhishek, et al.: Electrical transport and low-frequency noise in chemical vapor deposited single-layer MoS2 devices. Nanotechnology, Vol. 25, no. 15, 2014, Article # 155702. DOI 10.1088/0957-4484/25/15/155702

  20. Theodorou C.G., Ioannidis E.G., Andrieu F., Poiroux T., Faynot O., Dimitriadis C.A, Ghibaudo G.: Low-Frequency Noise Sources in Advanced UTBB FD-SOI MOSFETs. IEEE Trans on ED, Vol. 61, no. 4, 2014, pp. 1161 – 1167. DOI 10.1109/TED.2014.2307201

  21. Scarpino M., Gupta S., Lin D., Alian A, Crupi F., Collaert N., Thean A, Simoen E.: Border Traps in InGaAs nMOSFETs Assessed by Low-Frequency Noise. IEEE ED Lett., Vol. 35, no. 7, 2014, pp. 720 – 722. DOI 10.1109/LED.2014.2322388

  22. Nsele S.D., Escotte L., Tartarin J.-G., Piotrowicz S.: Noise Characteristics of AlInN/GaN HEMTs at Microwave Frequencies. Int. Conf on Noise and Fluctuations (ICNF), 2013, pp. 1 – 4. DOI 10.1109/ICNF.2013.6578989

  23. Palenskis V., Matukas J., Pralgauskaite S., Seliuta D., Kasalynas I., Subacius L., Valusis G., Khanna S.P., Linfield E.H.: Low-frequency Noise Properties of Beryllium δ-doped GaAs/AlAs Quantum Wells Near the Mott Transition. Journal of Applied Physics, Vol.113, no. 8, 2013, pp. 083707.1 – 083707.7. DOI 10.1063/1.4792741

  24. Han C.Y., Qian L.X., Leung C.H., Che C.M., Lai P.T.: A Low-frequency Noise Model with Carrier Generation-Recombination Process for Pentacene Organic Thin-film Transistor. Journal of Applied Physics, Vol.114, no. 4, 2013, pp. 044503.1 – 044503.6. DOI 10.1063/1.4816103

  25. Escotte L., Gonneau E.: Generation-Recombination Noise, Allan Variance, and Low-Frequency Gain Instabilities in Microwave Amplifiers. Int. Conf on Noise and Fluctuations (ICNF), 2013. DOI 10.1109/ICNF.2013.6579003

  26. Sydoruk V.A, Goss K., Meyer C., Danilchenko B.A, Petrychuk M.V., Li J., Pud S., Vitusevich S.: Noise Properties of Carbon Nanotube FETs with Top-and Side-Gate Geometries: Effect of Gamma Irradiation. Int. Conf on Noise and Fluctuations (ICNF), 2013, pp. 1 – 4. DOI 10.1109/ICNF.2013.6578937

  27. Simoen E., de Andrade M.G.C., Aoulaiche M., Collaert N., Claeys C.: Low-Frequency-Noise Investigation of n-Channel Bulk FinFETs Developed for One-Transistor Memory Cells. IEEE Trans on ED, Vol. 59, no. 5, 2012, pp.1272 – 1278. DOI 10.1109/TED.2012.2186815

  28. Luque Rodriguez A., Tejada J.A.J.., Rodriguez-Bolivar S., Almeida L.M., Aoulaiche M., Claeys C., Simoen E.: Dependence of Generation-Recombination Noise With Gate Voltage in FD SOI MOSFETs. IEEE Trans on ED, Vol. 59, no. 10, 2012, pp. 2780 – 2786. DOI 10.1109/TED.2012.2208970

  29. Theodorou C.G., Tsormpatzoglou A, Dimitriadis C.A, Khan S.A, Hatalis M.K., Jomaah J., Ghibaudo G.: Origin of Low-Frequency Noise in the Low Drain Current Range of Bottom-Gate Amorphous IGZO Thin-Film Transistors. IEEE ED Lett., Vol. 32, no. 7, 2011, pp. 898 – 900. DOI 10.1109/LED.2011.2143386

  30. Sokolov V. N., Kochelap V. A., Kim K. W.: Generation-Recombination Noise in Bipolar Graphene. Journal of Applied Physics, Vol. 110, no. 4, 2011, pp. 044327.1 – 044327.4. DOI 10.1063/1.3626820

  31. Maione I. A., Pellegrini B., Fiori G., Macucci M., Guidi L., Basso G.: Shot Noise Suppression in P-N Junctions Due to Carrier Generation-Recombination. Physical Review B, Vol. 83, no. 15, 2011, Article # 155309. DOI 10.1103/PhysRevB.83.155309

  32. Rodriguez A.L., Jimenez Tejada J.A., Gonzalez M.M., Planes M.R., Varo P.L., Godoy A.: Study of 1/f and generation-recombination noise in four gate transistors. 21st Int. Conf. on Noise and Fluctuations (ICNF), 2011, pp 283 – 286. DOI 10.1109/ICNF.2011.5994322

  33. Andreev A., Raska M., Sikula J., Grmela L.: Noise sources of p-type CdTe single crystal. 31st Int. Spring Seminar on Electronics Technology (ISSE '08), 2008, pp 25 – 27. DOI 10.1109/ISSE.2008.5276487

  34. Szentpali B.: Noise Limitations of the Applications of Miniature Thermal Resistors. IEEE Sensors Journal, Vol. 7, no 9, 2007, pp 1293 – 1299. DOI 10.1109/JSEN.2007.901267

  35. Zocchi F. E.: Generation-recombination and thermal noise coupling in the drift-diffusion model. Journal of Applied Physics, Vol. 102, no 10, 2007, pp 103712 – 103712-5. DOI 10.1063/1.2811847

  36. Jha S. K., C. Surya, K. J. Chen, K. M. Lau: Generation Recombination Noise in Dual Channel AlGaN/GaN High Electron Mobility Transistor. Proc. of the 36th European Solid-State Device Research Conf. (ESSDERC), 2006, pp 105 – 108. DOI 10.1109/ESSDER.2006.307649

  37. Rumyantsev S. L., Dmitriev A. P., Levinshtein M. E., Veksler D., Shur, Michael S., Palmour J. W., Das M. K., Hull B. A.: Generation-recombination noise in forward biased 4H-SiC p-n diodes. Journal of Applied Physics, Vol. 100, no 6, 2006, pp 064505 – 064505-6. DOI 10.1063/1.2345037

  38. Rumyantsev S.L., Pala N., Shur M.S., Levinshtein M.E., Gaska R., Asif Khan M., Simin G.: Generation-Recombination Noise in GaN-based Devices. Int. Journal of High Speed Electronics & Syst., Vol. 14, no. 1, 2004, pp. 175 – 195. DOI 10.1142/S0129156404002296

  39. Kunets V.P., Pomraenke R., Dobbert J., Kissel H., Muller U., Kostial H., Wiebicke E., Tarasov G.G., Mazur Y.I., Masselink W.T.: Generation-recombination noise in pseudomorphic Modulation-doped Al0.2Ga0.8As/In0.1Ga0.9As/GaAs micro-Hall devices. IEEE Sensors Journal, Vol. 5, no 5, 2005, pp 883 – 888. DOI 10.1109/JSEN.2004.841436

  40. Edwards P.J.: Recombination noise in semiconductor junction devices. IEE Proc. Circuits, Devices and Systems, Vol. 151, no. 2, 2004, pp. 175 – 183. DOI 10.1049/ip-cds:20040464

  41. Hastas N. A., Dimitriadis C. A., Kamarinos G.: Correlation of the generation-recombination noise with reliability issues of polycrystalline silicon thin-film transistors. Applied Physics Letters, Vol. 85, no 2, 2004, pp 311 – 313. DOI 10.1063/1.1769073

  42. Seghier D., Arinbjarnason T.M., Gislason H.P.: Deep-defect related generation-recombination noise in GaAs. 13th Int. Conf. on Semiconducting and Insulating Materials (SIMC-XIII-2004), 2004, pp 234 - 237. DOI 10.1109/SIM.2005.1511426

  43. Tzeng S. Y., Cich M. J., Zhao R., Feick H., Weber E. R.: Generation-recombination low-frequency noise signatures in GaAs metal–semiconductor field-effect transistors on laterally oxidized AlAs. Applied Physics Letters, Vol. 82, no 7, 2003, pp 1063 – 1065. DOI 10.1063/1.1555710

  44. Van Vliet Carolyne M.: Electronic noise due to multiple trap levels in homogeneous solids and in space-charge layers. J of Applied Physics, Vol. 93, no 10, 2003, pp 6068 – 6077. DOI 10.1063/1.1563291

  45. Ang D.S., Lun Z., Ling C.H.: Generation-recombination noise in the near fully depleted SIMOX SOI n-MOSFET - physical characteristics and modeling. IEEE Trans. on ED, Vol. 50, no 12, 2003, pp 2490 – 2498. DOI 10.1109/TED.2003.819371

  46. Sanchez J.E., Bosman G., Law M.E.: Two-dimensional semiconductor device simulation of trap-assisted generation-recombination noise under periodic large-signal conditions and its use for developing cyclostationary circuit simulation models. IEEE Trans. on ED, Vol. 50, no 5, 2003, pp 1353 – 1362. DOI 10.1109/TED.2003.813448

  47. Iqbal, M.A., Khan, S.H.: Generation-recombination noise characteristics of GaAs MESFETs. 7th Int. Multi Topic Conf. (INMIC), 2003, pp 192 – 196. DOI 10.1109/INMIC.2003.1416694

  48. Gomila G., Reggiani L.: Size effects on generation-recombination noise. Applied Physics Letters, Vol. 81, no 23, 2002, pp 4380 – 4382. DOI 10.1063/1.1526915

  49. Tejada J.A.J., Godoy A., Palma A., Cartujo P.: Temperature dependence of generation-recombination noise in p-n junctions. Proc. of the 5th European Workshop on Low Temperature Electronics, 2002, pp 71 – 74. DOI 10.1109/WOLTE.2002.1022453

  50. Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S., Gaska, R., Khan, M.A.: Low frequency and 1/f noise in wide-gap semiconductors: silicon carbide and gallium nitride. IEE Proc. - Circuits, Devices and Systems, Vol. 149, no 1, 2002, pp 32 – 39. DOI 10.1049/ip-cds:20020328

  51. Pala N., Rumyantsev S., Gaska R., Shur M., Yang J., Hu X., Simin G., Khan M.A.: Low frequency noise in Al0.4Ga0.6N thin films. Proc. IEEE Lester Eastman Conf. on High Performance Devices, 2002, pp 164 – 171. DOI 10.1109/LECHPD.2002.1146746

  52. Tejada J. A., Jimenez Godoy A., Palma A., Villanueva J. A. L.: Generation-recombination noise in highly asymmetrical p–n junctions. Journal of Applied Physics, Vol. 92, no 1, 2002, pp 320 – 329. DOI 10.1063/1.1486252

  53. Fan-Chi Hou, Bosman G., Law M.E.: Maximum allowable bulk defect density for generation-recombination noise-free device operation. IEEE Trans. on ED, Vol. 49, no 11, 2002, pp 2080 – 2082. DOI 10.1109/TED.2002.804705

  54. Sanchez J.E., Bosman G., Law M.E.: Device simulation of generation-recombination noise under periodic large-signal conditions. Int. Electron Devices Meeting (IEDM) Technical Digest, 2001, pp 21.1.1 – 21.1.4. DOI 10.1109/IEDM.2001.979549

  55. Babcock J.A., Loftin B., Madhani P., Xinfen Chen, Pinto A., Schroder D.K.: Comparative low frequency noise analysis of bipolar and MOS transistors using an advanced complementary BiCMOS technology. IEEE Conf. on. Custom Integrated Circuits, 2001, pp 385 – 388. DOI 10.1109/CICC.2001.929806

  56. Ang D.S., Lun Z., Ling C.H.: Generation-recombination noise in the near fully depleted SIMOX N-MOSFET operating in the linear region. IEEE ED Letters, Vol. 22, no 11, 2001, pp 545 – 547. DOI 10.1109/55.962658

  57. Rumyantsev S.L., Pala N., Shur M.S., Borovitskaya E., Dmitriev A.P., Levinshtein M.E., Gaska R., Khan M.A., Jinwei Yang, Xuhong Hu, Simin G.: Generation-recombination noise in GaN/AlGaN heterostructure field effect transistors. IEEE Trans. on ED, Vol. 48, no 3, 2001, pp 530 – 534. DOI 10.1109/16.906447

  58. Tejada J. A. J., Godoy A., Palma A., Cartujo P.: Contribution of injection in current noise due to generation and recombination of carriers in p–n junctions. Journal of Applied Physics, Vol. 90, no 8, 2001, pp 3998 – 4006. DOI 10.1063/1.1403676

  59. Perez S., Gonzalez T., Delage S. L., Obregon J.: Microscopic analysis of generation-recombination noise in semiconductors under dc and time-varying electric fields. Journal of Applied Physics, Vol. 88, no 2, 2000, pp 800 – 807. DOI 10.1063/1.373739

  60. Mohammadi S., Pavlidis D.: A nonfundamental theory of low-frequency noise in semiconductor devices. IEEE Trans. on ED, Vol. 47, no 11, 2000, pp 2009 – 2017. DOI 10.1109/16.877159

  61. Djuric Z.: Noise sources in microelectromechanical systems. Proc. 22nd Int. Conf. on Microelectronics, Vol. 1, 2000, pp 85 – 96. DOI 10.1109/ICMEL.2000.840534

  62. Yuping Chen, VanVliet C.M., Larkins G.L., Jr., Morkoc H.: Generation-recombination noise in nongated and gated AlxGa1-xAs/GaAs TEGFETs in the range 1 Hz to 1 MHz. IEEE Trans. on ED, Vol. 47, no 11, 2000, pp 2045 – 2053. DOI 10.1109/16.877165

  63. F. Bonani, G. Ghione: Generation-recombination noise modelling in semiconductor devices through population or approximate equivalent current density fluctuations. Solid State Electronics, Vol. 43, no. 2, 1999, pp. 285–295. DOI 10.1016/S0038-1101(98)00253-6

  64. Godoy A., Jimenez-Tejada J. A., Palma A., Cartujo P.: Influence of the doping profile and deep level trap characteristics on generation-recombination noise. Journal of Applied Physics, Vol. 82, no 7, 1997, pp 3351 – 3357. DOI 10.1063/1.365647

  65. Lukyanchikova N., Petrichuk M., Garbar N., Simoen E., Claeys C.: Back and front interface related generation-recombination noise in buried-channel SOI pMOSFETs. IEEE Trans. on ED, Vol. 43, no 3, 1996, pp 417 – 423. DOI 10.1109/16.485655

  66. Jevtic M.: Low-frequency noise diagnostic of microelectronic devices. Proc. 20th Int. Conf. on Microelectronics, Vol. 1, 1995, pp 219 – 224. DOI 10.1109/ICMEL.1995.500868

  67. Lin H.S., Colestock P.A., Fang P., Chen T.M.: Generation-recombination noise in GaAs p+-i-n+ diodes. Proc. IEEE Southeastcon '89 Energy and Information Technologies in the Southeast, Vol. 3, 1989, pp 1295 – 1297. DOI 10.1109/SECON.1989.132631

  68. Kugler S.: Generation-recombination noise in the saturation regime of MODFET structures. IEEE Trans. on ED, Vol. 35, no 5, 1988, pp 623 – 628. DOI 10.1109/16.2504

  69. Macucci M., Pellegrini B., Terreni P., Reggiani L.: Correlation between thermal and generation recombination noise sources: Analytical and Monte Carlo approaches. Journal of Applied Physics, Vol. 63, no 11, 1988, pp 5369 – 5374. DOI 10.1063/1.340354

  70. Forbes L., Canfield P., Gleason R., McCamant A.: VIB-2 Separation of generation-recombination and 1/f noise components in GaAs FET's. IEEE Trans. on ED, Vol. 31, no 12, 1984, pp 1986. DOI 10.1109/T-ED.1984.21890

  71. Zhang X.N., van der Ziel A., Duh K.H., Morkoc H.: Burst and low-frequency generation-recombination noise in double-heterojunction bipolar transistors. IEEE ED Letters, Vol. 5, no 7, 1984, pp 277 – 279. DOI 10.1109/EDL.1984.25916

  72. Moghe S.B., Gutmann R.J., Chudzicki M.J., Borrego J.M.: Effect of neutron and gamma irradiation on the low-frequency noise in GaAs MESFETs. Electronics Letters, Vol. 14, no 19, 1978, pp 637 – 639. DOI 10.1049/el:19780428

  73. Sodini D., Touboul A., Lecoy G., Savelli M.: Generation-recombination noise in the channel of GaAs Schottky-gate field-effect transistors. Electronics Letters, Vol. 12, no 2, 1976, pp 42 – 43. DOI 10.1049/el:19760033

  74. Hiatt C.F., van der Ziel A., van Vliet K.M.: Generation-recombination noise produced in the channel of JFET's. IEEE Trans. on ED, Vol. 22, no 8, 1975, pp 614 – 616. DOI 10.1109/T-ED.1975.18187

  75. Boctor Waguih J., Prasad S.: Generation-recombination noise of junction-gate field-effect transistors. Proc. of the IEE, Vol. 121, no 12, 1974, pp 1457 – 1459. DOI 10.1049/piee.1974.0306

  76. Salz J.: Generation-recombination noise in solids. IEEE Trans. on Information Theory, Vol. 15, no 6, 1969, pp 644 – 648. DOI 10.1109/TIT.1969.1054386

  77. Yau L.D., Chih-Tang Sah: Theory and experiments of low-frequency generation-recombination noise in MOS transistors. IEEE Trans. on ED, Vol. 16, no 2, pp 170 – 177., Feb 1969 DOI 10.1109/T-ED.1969.16586

  78. Lauritzen P.O.: Noise due to generation and recombination of carriers in p-n junction transition regions. IEEE Trans. on ED, Vol. 15, no 10, 1968, pp 770 – 776. DOI 10.1109/T-ED.1968.16513

  79. Lauritzen P.O., Sah C.T.: Low-frequency recombination-generation noise in Silicon FET's. IEEE Trans. on ED, Vol. 10, no 5, 1963, pp 334 – 335. DOI 10.1109/T-ED.1963.15222

  80. Champlin K.S.: Generation-recombination noise in semiconductors – The equivalent circuit approach. IRE Trans. on ED, Vol. 7, no 1, 1960, pp 29 – 38. DOI 10.1109/T-ED.1960.14588

  81. Hill J. E., Van Vliet K. M.: Generation Recombination Noise in Intrinsic and Near‐Intrinsic Germanium Crystals. Journal of Applied Physics, Vol. 29, no 2, 1958, pp 177 – 182. DOI 10.1063/1.1723061

Back to top list

 

    Quantum noise

  1.  Masataka Nakazawa, Masato Yoshida, Toshihiko Hirooka, Keisuke Kasai, Takuya Hirano, Tsubasa Ichikawa, Ryo Namiki: QAM Quantum Noise Stream Cipher Transmission Over 100 km With Continuous Variable Quantum Key Distribution. IEEE J. of Quantum Electronics, Vol. 53, no. 4, 2017, pp. 1 – 16. DOI 10.1109/JQE.2017.2708523

  2. Paz-Silva G.A., Norris L.M., Viola L.: Multiqubit spectroscopy of Gaussian quantum noise. Physical Review A, Vol. 95, no. 2, 2017, Article # 022121. DOI 10.1103/PhysRevA.95.022121

  3. Vuglar S.L., Petersen I.R.: Quantum Noises, Physical Realizability and Coherent Quantum Feedback Control. IEEE Trans on Automatic Control, Vol. 62, no. 2, 2017, pp. 998 – 1003. DOI 10.1109/TAC.2016.2574641

  4. Prousalis K., Konofaos N.: Quantum noise simulation: A software module for QuCirDET. 6th Int Conf on Modern Circuits and Systems Technologies (MOCAST), 2017, pp. 1 – 4. https://doi.org/10.1109/MOCAST.2017.7937636

  5. Caffarena G., Menard D.: Quantization Noise Power Estimation for Floating-Point DSP Circuits. IEEE Trans on CAS II : Express Briefs, Vol. 63, no. 6, 2016, pp. 593 – 597. DOI 10.1109/TCSII.2016.2530802

  6. Chong E.Q., Lingerfelt D.B., Alessio Petrone, Xiaosong Li: Classical or Quantum? A Computational Study of Small Ion Diffusion in II–VI Semiconductor Quantum Dots. J. Phys. Chem. C, Vol. 120, no. 34, 2016, pp.19434 – 19441. DOI 10.1021/acs.jpcc.6b05883

  7. Yamada Isao: Stochastic model for quantum noise analysis in flat-panel detectors for medical imaging applications. Journal of the Optical Society of America A – Optics Image Science and Vision, Vol. 33, no. 12, 2016, pp. 2443 – 2449. DOI 10.1364/JOSAA.33.002443

  8. Alonso-Sanz Ramon, Situ Haozhen: On the Effect of Quantum Noise in a Quantum-Relativistic Prisoner's Dilemma Cellular Automaton. Int. Journal of Theoretical Physics, Vol. 55, no. 12, 2016, pp. 5265 – 5279. DOI 10.1007/s10773-016-3147-z

  9. Wang Ming-Ming, Qu Zhi-Guo: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Information Processing, Vol. 15, no. 11, 2016, pp. 4805 – 4818. DOI 10.1007/s11128-016-1430-9

  10. Marian D., Colomes E.: Noise in Quantum Devices: A Unified Computational Approach for Different Scattering Mechanisms. Fluct. & Noise Lett., Vol. 15, no. 3, Special Issue: SI, 2016, Article # 1640008. DOI 10.1142/S0219477516400083

  11. Vacchini Bassano: Quantum Noise from Reduced Dynamics. Fluct. & Noise Lett., Vol. 15, no. 3, Special Issue: SI, 2016, Article # 1640003. DOI 10.1142/S0219477516400034

  12. Shi Pengqin, Hu Menghan, Ying Yaofeng, et al.: Noise spectrum of quantum transport through double quantum dots: Renormalization and non-Markovian effects. AIP Advances, Vol. 6, no. 9, 2016, Article # 095002. DOI 10.1063/1.4962527

  13. Gaury B., Waintal X.: A computational approach to quantum noise in time-dependent nanoelectronic devices (Reprinted). Physica E - Low-Dimensional Systems & Nanostructures, Vol. 82, 2016, pp. 200 – 203. DOI 10.1016/j.physe.2016.02.031

  14. Khalili F.Ya., Tarabrin S.P., Hammerer K.: Generalized analysis of quantum noise and dynamic backaction in signal-recycled Michelson-type laser interferometers. Physical Review A, Vol. 94, no. 1, 2016, Article # 013844. DOI 10.1103/PhysRevA.94.013844

  15. Roussel B., Degiovanni P., Safi Ins: Perturbative fluctuation dissipation relation for nonequilibrium finite-frequency noise in quantum circuits. Physical Review B, Vol. 93, no. 4, 2016, Article # 045102. https://doi.org/10.1103/PhysRevB.93.045102

  16. Motazedifard A., Bemani F., Naderi M.H., Roknizadeh R., Vitali D.: Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection. New Journal of Physics, Vol. 18, 2016, Article # 073040. https://doi.org/10.1088/1367-2630/18/7/073040

  17. Franson J.D., Kirby B.T.: Origin of quantum noise and decoherence in distributed amplifiers. Physical Review A, Vol. 92, no. 5, 2015, Article # 053825. DOI 10.1103/PhysRevA.92.053825

  18. Jin Jinshuang, Wang Shikuan, Zheng Xiao, et al.: Current noise spectra and mechanisms with dissipaton equation of motion theory. J. of Chemical Physics, Vol. 142, no. 23, 2015, Article # 234108. DOI 10.1063/1.4922712

  19. Marian D., Colomes E., Zhan Z., Oriols X.: Quantum noise from a Bohmian perspective: fundamental understanding and practical computation in electron devices. J. of Computational Electronics, Vol. 14, no. 1, Special Issue: SI, 2015, pp. 114 – 128. DOI 10.1007/s10825-015-0672-6

  20. Chapeau-Blondeau F.: Optimized probing states for qubit phase estimation with general quantum noise. Physical Review A, Vol. 91, no. 5, 2015, Article # 052310. DOI 10.1103/PhysRevA.91.052310

  21. Kaasbjerg K., Nitzan A.: Theory of Light Emission from Quantum Noise in Plasmonic Contacts: Above-Threshold Emission from Higher-Order Electron-Plasmon Scattering. Physical Review Letters, Vol. 114, no. 12, 2015, Article # 126803. DOI 10.1103/PhysRevLett.114.126803

  22. Ryan Hamerly, Hideo Mabuchi: Quantum Noise of Free-Carrier Dispersion in Semiconductor Optical Cavities. Physical Review A, Vol. 92, no. 2, 2015, Article # 023819. https://doi.org/10.1103/PhysRevA.92.023819

  23. Santori C., Pelc J.S., Beausoleil R.G., Tezak N., R. Hamerly, Hideo Mabuchi: Quantum Noise in Large-Scale Coherent Nonlinear Photonic Circuits. Physical Review Applied, Vol. 1, no. 5, 2014, Article # 054005. https://doi.org/10.1103/PhysRevApplied.1.054005

  24. Barbon L.F., Rabinovici E.: Geometry and quantum noise. Progress of Physics, Vol. 62, no. 8, 2014, pp. 626 – 646. DOI 10.1002/prop.201400044

  25. Xu F., Holmqvist C., Belzig W.: Overbias Light Emission due to Higher-Order Quantum Noise in a Tunnel Junction. Physical Review Lett., Vol. 113, no. 6, 2014, Article # 066801. https://doi.org/10.1103/PhysRevLett.113.066801

  26. Atikur Rahman, Janice Wynn Guikema, Nina Marković: Quantum Noise and Asymmetric Scattering of Electrons and Holes in Graphene. Nano Lett., Vol. 14, no. 11, 2014, pp. 6621 – 6625. DOI 10.1021/nl503276s

  27. Yu C.C., Zhi Chen: Noise in Superconducting Qubits and Spin Glasses. Int. Conf on Noise and Fluctuations (ICNF), 2013, pp. 1 – 4. DOI 10.1109/ICNF.2013.6579005

  28. Handel P.H.: Decoherence and Conventional Quantum 1/f Noise. Int. Conf on Noise and Fluctuations (ICNF), 2013, pp. 1 – 4. DOI 10.1109/ICNF.2013.6578914

  29. Vuglar S.L., Petersen I.R.: Quantum Implemention of an LTI System with the Minimal Number of Additional Quantum Noise Inputs. European Control Conference (ECC), 2013, pp. 2724 – 2727. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6669508&isnumber=6669080

  30. Nan Zhao, Jia-Lin Zhu, R-B Liu, C P Sun: Quantum noise theory for quantum transport through nanostructures. New J. Phys., Vol 13, no 1, 2011, pp 013005-1 – 013005-12. DOI 10.1088/1367-2630/13/1/013005

  31. Zhang W., Khosropanah P., Gao J. R., Kollberg E. L., Yngvesson K. S., Bansal T., Barends R., Klapwijk T. M.: Quantum noise in a terahertz hot electron bolometer mixer. Applied Physics Letters, Vol. 96, no. 11, 2010, pp. 111113 – 111113-3. DOI 10.1063/1.3364936

  32. Pant M., Ang L.K., Koh W.S.: Quantum shot noise reduction for electron field emission from different shapes. 8th Int. Vacuum Electron Sources Conf. and Nanocarbon (IVESC), 2010, pp. 266-267 DOI 10.1109/IVESC.2010.5644265

  33. Khosropanah P., Wen Zhang; Kollberg E.L., Yngvesson K.S., Gao J.R., Bansal T., Hajenius M.: Analysis of NbN Hot Electron Bolometer Receiver Noise Temperatures Above 2 THz With a Quantum Noise Model. IEEE Trans. on Applied Superconductivity, Vol. 19, no. 3, 2009, pp. 274 – 277. DOI 10.1109/TASC.2009.2018817

  34. J. Gabelli, B. Reulet: High frequency dynamics and the third cumulant of quantum noise. J. Stat. Mech., 2009, P01049. DOI 10.1088/1742-5468/2009/01/P01049

  35. A . Alarcn, X. Oriols: Computation of quantum electron transport with local current conservation using quantum trajectories. J. Stat. Mech., 2009, P01051. DOI 10.1088/1742-5468/2009/01/P01051

  36. Huntington E.H., Harb C.C., Heurs M., Ralph T.C.: The Quantum Noise Limits to Simultaneous Intensity and Frequency Stabilization of Solid-State Lasers. Conf. on Lasers and Electro-Optics (CLEO), pp. 1 – 2., 2007 DOI 10.1109/CLEO.2007.4453689

  37. Kollberg E.L., Yngvesson K.S.: Quantum-noise theory for terahertz hot electron bolometer mixers. IEEE Trans. on MTT, Vol. 54, no. 5, 2006, pp. 2077 – 2089. DOI 10.1109/TMTT.2006.873628

  38. Oriols X.: Quantum mechanical effects on noise properties of nanoelectronic devices: application to Monte Carlo simulation. IEEE Trans on ED, Vol. 50, no. 9, 2003, pp. 1830 – 1836. DOI 10.1109/TED.2003.815369

  39. Shore K.A., Kane D.M.: Quantum noise penalty in laser diode arrays. IEE Proc. - Optoelectronics, Vol. 150, no. 2, 2003, pp. 163 – 166. DOI 10.1049/ip-opt:20030455

  40. Shore K.A., Kane D.M.: Low quantum noise laser diodes. IEE Proc. - Optoelectronics, Vol. 148, no. 56, 2001, pp. 247 – 250. DOI 10.1049/ip-opt:20010795

  41. Lee R.A.M., Hao L., Peden D.A., Gallop J.C., Macfarlane J.C., Romans E.J.: Quantum Roulette Noise Thermometer: Progress and prospects. IEEE Trans. on Applied Superconductivity, Vol. 11, no. 1, 2001, pp. 859 – 862. DOI 10.1109/77.919480

  42. Bullough R.K., Bogoliubov N.M., Timonen J.T.: Quantum solitons of the nonlinear Schrodinger equations and their quantum noise. Int. Quantum Electronics Conf., Digest., 2000, pp. 1 DOI 10.1109/IQEC.2000.908152

  43. van Druten N.J., van der Lee A.M., van Exter M.P., Woerdman J.P.: Excess quantum noise is colored. Summaries of Papers Presented at the Quantum Electronics and Laser Science Conf. (QELS '99), pp. 194, 1999 DOI 10.1109/QELS.1999.807520

  44. Sun H.B., Milburn G.J.: Quantum noise in coherently coupled double well systems. Proc.. Conf. on Optoelectronic and Microelectronic Materials Devices, 1999, pp. 294 – 297. DOI 10.1109/COMMAD.1998.791645

  45. Woerdman J.P., Van Eijkelenborg M.A., Van Exter M.P., Lindberg A.M.: Exploring the nature of excess quantum noise. Summaries of papers presented at the Int. Quantum Electronics Conf. (IQEC 98), 1998, pp. 196-197 DOI 10.1109/IQEC.1998.680400

  46. Olsen M.K., Plimak L.I., Drummond P.D., Graham R., Tan S.M., Collett M.J., Walls D.F.: Quantum noise in Bose-Einstein condensates. Summaries of papers presented at the Int. Quantum Electronics Conf. (IQEC 98), 1998, pp. 68 – 69. DOI 10.1109/IQEC.1998.680138

  47. Henry C.H., Kazarinov R.F.: The origins of quantum noise in photonics. Vertical-Cavity Lasers, Technologies for a Global Information Infrastructure, WDM Components Technology, Advanced Semiconductor Lasers and Applications, Gallium Nitride Materials, Processing, and Devi , 1997, pp. 51 – 52. DOI 10.1109/LEOSST.1997.619216

  48. Sun H.B., Milburn G.J.: Quantum noise in resonant tunnelling. Proc. Conf. on Optoelectronic and Microelectronic Materials and Devices, 1996, pp. 231 – 234. DOI 10.1109/COMMAD.1996.610113

  49. Henry C.H., Kazarinov R.F.: Quantum noise in photonics. 1996. http://hexagon.physics.wisc.edu/teaching/2009f%20ph746%20quantum%20electronics/henry%20quantum%20noise%20in%20photonics%20RMP%201996.pdf

  50. Berglind E., Gillner L.: Optical quantum noise treated with classical electrical network theory. IEEE Journal of Quantum Electronics, Vol. 30, no. 3, 1994, pp. 846 – 853. DOI 10.1109/3.286178

  51. Saleh B.E.A., Hayat M.M.: Quantum noise in optical neural networks. Conf. Proc.. IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS '94), Vol. 1, 1994, pp. 10 – 11. DOI 10.1109/LEOS.1994.586865

  52. Linlin Li: Theory for the quantum noise in N-element coupled-cavity semiconductor lasers. IEEE Journal of Quantum Electronics, Vol. 28, no. 1, 1992, pp. 16 – 20. DOI 10.1109/3.119487

  53. Wengler M., Woody D.: Quantum noise in heterodyne detection. IEEE Journal of Quantum Electronics, Vol. 23, no. 5, 1987, pp. 613 – 622. DOI 10.1109/JQE.1987.1073387

  54. Feldman M.: Quantum noise in the quantum theory of mixing. IEEE Trans. on Magnetics, Vol. 23, no. 2, 1987, pp. 1054 – 1057. DOI 10.1109/TMAG.1987.1065089

  55. Yurek A., Taylor H., Goldberg L., Weller J., Dandridge A.: Quantum noise in superluminescent diodes. IEEE Journal of Quantum Electronics, Vol. 22, no. 4, 1986, pp. 522 – 527. DOI 10.1109/JQE.1986.1072985

  56. Zorin A.: Quantum noise in SIS mixers. IEEE Trans. on Magnetics, Vol. 21, no. 2, 1985, pp. 939 – 942. DOI 10.1109/TMAG.1985.1063669

  57. Kuzmin L., Likharev K., Migulin V., Zorin A.: Quantum noise in Josephson-junction parametric amplifiers. IEEE Trans. on Magnetics, Vol. 19, no. 3, 1983, pp. 618 – 621. DOI 10.1109/TMAG.1983.1062472

  58. Yamamoto Y., Saito S., Mukai T.: AM and FM quantum noise in semiconductor lasers--Part II: Comparison of theoretical and experimental results for AlGaAs lasers. IEEE Journal of Quantum Electronics, Vol. 19, no. 1, 1983, pp. 47 – 58. DOI 10.1109/JQE.1983.1071729

  59. Danilov V., Likharev K., Zorin A.: Quantum noise in SQUIDs. IEEE Trans. on Magnetics, Vol. 19, no. 3, 1983, pp. 572 – 575. DOI 10.1109/TMAG.1983.1062489

  60. Yamamoto Y.: AM and FM quantum noise in semiconductor lasers--Part I: Theoretical analysis. IEEE Journal of Quantum Electronics, Vol. 19, no. 1, 1983, pp. 34 – 46. DOI 10.1109/JQE.1983.1071726

  61. Koch R. H., Van Harlingen D. J., Clarke J: Quantum noise theory for the dc SQUID. Applied Physics Letters, Vol. 38, no. 5, pp. 380-382, Mar 1981
    DOI 10.1063/1.92345

  62. Yuen H., Shapiro J.: Optical communication with two-photon coherent states--Part I: Quantum-state propagation and quantum-noise. IEEE Trans. on Information Theory, Vol. 24, no. 6, 1978, pp. 657 – 668. DOI 10.1109/TIT.1978.1055958

  63. Oliver B. M.: Thermal and Quantum Noise. Proc. of the IEEE, May 1965, pp 436 – 454. DOI 10.1109/PROC.1965.3814

Back to top list

 

    Shot noise

  1. Zhu Rui, Hui Pak Ming: Shot noise and Fano factor in tunneling in three-band pseudospin-1 Dirac-Weyl systems. Physics Lett. A, Vol. 381, no. 23, 2017, pp. 1971 – 1975. DOI 10.1016/j.physleta.2017.04.023

  2. Wang Jyh-Yang, Chung Tao-Hsiang, Lee Teik-Hui, et al.: Quadratic Characteristics of Environment Induced Voltage Shot Noise in Josephson Junctions. Scientific Reports, Vol. 7, 2017, Article # 3567. DOI 10.1038/s41598-017-03790-x

  3. Kozawa Takahiro, Santillan J.J., Itani Toshiro: Shot noise limit of chemically amplified resists with photodecomposable quenchers used for extreme ultraviolet lithography. Japanese J. of Applied Physics, Vol. 56, no. 6, 2017, Article # 066501. DOI 10.7567/JJAP.56.066501

  4. Zhong Changchun, Robicheaux F.: Shot-noise-dominant regime for ellipsoidal nanoparticles in a linearly polarized beam. Physical Review A, Vol. 95, no. 5, 2017, Article # 053421. DOI 10.1103/PhysRevA.95.053421

  5. Suzuki Takafumi J., Hayakawa Hisao: Non-Gaussianity in a quasiclassical electronic circuit. Physical Review B, Vol. 95, no. 20, 2017, Article # 205412. DOI 10.1103/PhysRevB.95.205412

  6. Jia Xiaofei, He Liang: Research of shot noise based on realistic nano-MOSFETs. AIP Advances, Vol. 7, no. 5, 2017, Article # 055202. DOI 10.1063/1.4979885

  7. Zhou Panpan, Hardy W.J., Watanabe Kenji, et al.: Shot noise detection in hBN-based tunnel junctions. Applied Physics Lett., Vol. 110, no. 13, 2017, Article # 133106. DOI 10.1063/1.4978693

  8. Yan Jiawei, Wang Shizhuo, Xia Ke, et al.: First-principles quantum transport method for disordered nanoelectronics: Disorder-averaged transmission, shot noise, and device-to-device variability. Physical Review B, Vol. 95, no. 12, 2017, Article # 125428. DOI 10.1103/PhysRevB.95.125428

  9. Feldman D.E., Heiblum Moty: Why a noninteracting model works for shot noise in fractional charge experiments. Physical Review B, Vol. 95, no. 11, 2017, Article # 115308. DOI 10.1103/PhysRevB.95.115308

  10. Wagner T., Strasberg P., Bayer J.C., et al.: Strong suppression of shot noise in a feedback-controlled single-electron transistor. Nature Nanotechnology, Vol. 12, no. 3, 2017, pp. 218 – 222. DOI 10.1038/NNANO.2016.225

  11. Rananavare S.B., Morakinyo M.K.: Use of Sacrificial Nanoparticles to Remove the Effects of Shot-noise in Contact Holes Fabricated by E-beam Lithography. JOVE - Journal of Visualized Experiments, no. 120, 2017, Article # e54551. DOI 10.3791/54551

  12. Zhang Gengyan, Liu Yanbing, Raftery J.J., Houck A.A.: Suppression of photon shot noise dephasing in a tunable coupling superconducting qubit. NPJ Quantum Information, Vol. 3, 2017, Article # 1. DOI 10.1038/s41534-016-0002-2

  13. Paul G.C., Dutta P., Saha A.: Transport and noise properties of a normal metal-superconductor-normal metal junction with mixed singlet and chiral triplet pairings. J. of Physics: Condensed Matter, Vol. 29, no. 1, 2017, Article # 015301. DOI 10.1088/0953-8984/29/1/015301

  14. Semenov A.G., Zaikin A.D.: Shot Noise in Ultrathin Superconducting Wires. J. of Superconductivity and Novel Magnetism, Vol. 30, no. 1, 2017, pp. 139 – 143. DOI 10.1007/s10948-016-3783-9

  15. Szczepanski T., Dugaev V.K., Barnas J., et al.: Shot noise in magnetic tunneling structures with two-level quantum dots. Physical Review B, Vol. 94, no. 23, 2016, Article # 235429. DOI 10.1103/PhysRevB.94.235429

  16. Stevens L.A., Zolotavin P., Chen Ruoyu, Natelson D.: Current noise enhancement: channel mixing and possible nonequilibrium phonon backaction in atomic-scale Au junctions. J. of Physics: Condensed Matter, Vol. 28, no. 49, 2016, Article # 495303. DOI 10.1088/0953-8984/28/49/495303

  17. Belogolovskii M., Zhitlukhina E., Egorov O.: Low-energy spectra of differential conductivity and shot noise in tunnel junctions based on superconductors with suppression of the order parameter at the S-N interface. Low Temperature Physics, Vol. 42, no. 11, 2016, pp. 1063 – 1066. DOI 10.1063/1.4971170

  18. Datesman A.: Shot noise in radiobiological systems. J. of Environmental Radioactivity, Vol. 164, 2016, pp. 365 – 368. DOI 10.1016/j.jenvrad.2016.06.017

  19. Wang Bingbing, Wang Xiaodong, Chen Xiaoyao, et al.: Experimental and theoretical research on noise behaviors of epitaxial Si: P blocked-impurity-band detectors. Optical and Quantum Electronics, Vol. 48, no. 11, 2016, Article # 517. DOI 10.1007/s11082-016-0777-6

  20. Tikhonov E.S., Shovkun D.V., Ercolani D., et al.: Noise thermometry applied to thermoelectric measurements in InAs nanowires. Semiconductor Science and Technology, Vol. 31, no. 10, 2016, Article # 104001. DOI 10.1088/0268-1242/31/10/104001

  21. Golub A.: Shot noise in NS junctions with a Weyl superconductor. Physical Review B, Vol. 94, no. 11, 2016, Article # 115133. DOI 10.1103/PhysRevB.94.115133

  22. Macucci M., Marconcini P.: Origin of Shot Noise in Mesoscopic Cavities. Fluct. & Noise Lett., Vol. 15, no. 3, Special Issue: SI, 2016, Article # 1640006. DOI 10.1142/S021947751640006X

  23. Gajdacz M., Hilliard A.J., Kristensen M.A., et al.: Preparation of Ultracold Atom Clouds at the Shot Noise Level. Physical Review Lett., Vol. 117, no. 7, 2016, Article # 073604. DOI 10.1103/PhysRevLett.117.073604

  24. Hussein R., Kohler S., Sols F.: Heat pump driven by the shot noise of a tunnel contact. Physica E - Low-Dimensional Systems & Nanostructures, Vol. 82, 2016, pp. 50 – 57. DOI 10.1016/j.physe.2016.01.017

  25. Takahashi Ryoji, Kaneko Satoshi, Marques-Gonzalez S., et al.: Determination of the number of atoms present in nano contact based on shot noise measurements with highly stable nano-fabricated electrodes. Nanotechnology, Vol. 27, no. 29, 2016, Article # 295203. DOI 10.1088/0957-4484/27/29/295203

  26. Semenov A.G., Zaikin A.D.: Quantum phase slip noise. Physical Review B, Vol. 94, no. 1, 2016, Article # 014512. DOI 10.1103/PhysRevB.94.014512

  27. Chen Ruoyu, Natelson D.: Evolution of shot noise in suspended lithographic gold break junctions with bias and temperature. Nanotechnology, Vol. 27, no. 24, 2016, Article # 245201. DOI 10.1088/0957-4484/27/24/245201

  28. Muro Tatsuya, Nishihara Yoshitaka, Norimoto Shota, et al.: Finite shot noise and electron heating at quantized conductance in high-mobility quantum point contacts. Physical Review B, Vol. 93, no. 19, 2016, Article # 195411. DOI 10.1103/PhysRevB.93.195411

  29. Jeon Jongwook, Kang Myounggon: Shot noise effect on noise source and noise parameter of 10-nm-scale quasi-ballistic n-/p-type MOS devices. Japanese J. of Applied Physics, Vol. 55, no. 5, 2016, Article # 054102. DOI 10.7567/JJAP.55.054102

  30. Zhang Jian, Zhao Hong-Kang, Wang Qing: Shot noise in a toroidal carbon nanotube coupled with Majorana fermion states. Physics Lett. A, Vol. 380, no. 14-15, 2016, pp. 1378 – 1384. DOI 10.1016/j.physleta.2016.01.055

  31. Gopar V.A.: Shot noise fluctuations in disordered graphene nanoribbons near the Dirac point. Physica E - Low-Dimensional Systems & Nanostructures, Vol. 77, 2016, pp. 23 – 28. DOI 10.1016/j.physe.2015.10.032

  32. Kamra Akashdeep, Belzig W.: Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport. Physical Review Lett., Vol. 116, no. 14, 2016, Article # 146601. DOI 10.1103/PhysRevLett.116.146601

  33. Karimi M.A., Bahoosh S.G., Herz M., et al.: Shot Noise of 1,4-Benzenedithiol Single-Molecule Junctions. NANO Lett., Vol. 16, no. 3, 2016, pp. 1803 – 1807. DOI 10.1021/acs.nanolett.5b04848

  34. Laitinen A., Paraoanu G.S., Oksanen M., et al.: Contact doping, Klein tunneling, and asymmetry of shot noise in suspended graphene. Physical Review B, Vol. 93, no. 11, 2016, Article # 115413. DOI 10.1103/PhysRevB.93.115413

  35. Aseev P.P., Nagaev K.E.: Shot noise in the edge states of two-dimensional topological insulators. Physical Review B, Vol. 94, no. 4, 2016, Article # 045425. DOI 10.1103/PhysRevB.94.045425

  36. Rice Frank: A frequency-domain derivation of shot-noise. American Journal of Physics, Vol. 84, no. 1, 2016, pp. 44 – 51. DOI 10.1119/1.4934706

  37. Burtzlaff A., Schneider N.L., Weismann A., et al.: Shot noise from single atom contacts in a scanning tunneling microscope. Surface Science, Vol. 643, Special Issue: SI, 2016, pp. 10 – 12. DOI 10.1016/j.susc.2015.07.006

  38. Budhiraja Amarjit, Nyquist Pierre: Large Deviations for Multidimensional State-Dependent Shot-Noise Processes. J. of Applied Probability, Vol. 52, no. 4, 2015, pp. 1097 – 1114.

  39. Rajdl Kamil, Lansky Petr: Shot-noise Fano factor. Physical Review E, Vol. 92, no. 5, 2015, Article # 052135. DOI 10.1103/PhysRevE.92.052135

  40. Liu Mi, Zhu Rui: Shot Noise of the Conductance through a Superconducting Barrier in Graphene. Chinese Physics Lett., Vol. 32, no. 12, 2015, Article # 127401. DOI 10.1088/0256-307X/32/12/127401

  41. Forgues J.-C., Lupien C., Reulet B.: Experimental Violation of Bell-like Inequalities by Electronic Shot Noise. Physical Review Lett., Vol. 114, no. 13, 2015, Article # 130403. 015 DOI 10.1103/PhysRevLett.114.130403

  42. Hasler T., Jung M., Ranjan V., et al.: Shot Noise of a Quantum Dot Measured with Gigahertz Impedance Matching. Physical Review Applied, Vol. 4, no. 5, 2015, Article # 054002. DOI 10.1103/PhysRevApplied.4.054002

  43. Zmuidzinas Jonas: On the Use of Shot Noise for Photon Counting. Astrophysical Journal, Vol. 813, no. 1, 2015, Article # 17. DOI 10.1088/0004-637X/813/1/17

  44. Zhu Rui, Zhu Guo-Yi: Conductance and shot noise in the helimagnet tunnel junction. Physics Lett. A, Vol. 379, no. 39, 2015, pp. 2466 – 2473. DOI 10.1016/j.physleta.2015.07.004

  45. Sattari Farhad: Spin-dependent shot noise in magnetic graphene superlattice. Superlattices and Microstructures, Vol. 86, 2015, pp. 29 – 35. DOI 10.1016/j.spmi.2015.07.028

  46. Sattari Farhad: Shot noise in magnetic field modulated graphene superlattice. Physica E - Low-Dimensional Systems & Nanostructures, Vol. 72, 2015, pp. 134 – 139. DOI 10.1016/j.physe.2015.04.025

  47. Sartipi Zahra, Vahedi Javad: Shot Noise of Charge and Spin Current of a Quantum Dot Coupled to Semiconductor Electrodes. J. of Physical Chemistry A, Vol. 119, no. 41, 2015, pp. 10399 – 10407. DOI 10.1021/acs.jpca.5b06360

  48. Kumada N., Parmentier F.D., Hibino H., et al.: Shot noise generated by graphene p-n junctions in the quantum Hall effect regime. Nature Communications, Vol. 6, 2015, Article # 8068. DOI 10.1038/ncomms9068

  49. Zhou Yang, Guo Jian-Hong: Shot noise characteristics of Majorana fermions in transport through double quantum dots. Acta Physica Sinica, Vol. 64, no. 16, Special Issue: SI, 2015, Article # 167302. DOI 10.7498/aps.64.167302

  50. Spathis C., Birbas A., Georgakopoulou K.: Semi-classical noise investigation for sub-40nm metal-oxide-semiconductor field-effect transistors. AIP Advances, Vol. 5, no. 8, 2015, Article # 087114. DOI 10.1063/1.4928424

  51. Zou Wei-Ke, Zhao Hong-Kang: Photon and phonon-assisted shot noise in a molecular quantum-dot-ferromagnetic system in the Coulomb blockade regime. European Physical Journal B, Vol. 88, no. 8, 2015, Article # 210. DOI 10.1140/epjb/e2015-60102-x

  52. Hagerstrom A.M., Murphy T.E., Roy R.: Harvesting entropy and quantifying the transition from noise to chaos in a photon-counting feedback loop. PNAS, Vol. 112, no. 30, 2015, pp. 9258 – 9263. DOI 10.1073/pnas.1506600112

  53. Jeong Heejun: Shot Noise Suppression in a Quantum Point Contact with Short Channel Length. Chinese Physics Lett., Vol. 32, no. 7, 2015, Article # 077301. DOI 10.1088/0256-307X/32/7/077301

  54. Kaasbjerg Kristen, Belzig Wolfgang: Full counting statistics and shot noise of cotunneling in quantum dots and single-molecule transistors. Physical Review B, Vol. 91, no. 23, 2015, Article # 235413. DOI 10.1103/PhysRevB.91.235413

  55. Brigham Marco, Destexhe Alain: Nonstationary filtered shot-noise processes and applications to neuronal membranes. Physical Review E, Vol. 91, no. 6, 2015, Article # 062102. DOI 10.1103/PhysRevE.91.062102

  56. Tikhonov E.S., Shovkun D.V., Khrapai V.S., et al.: Shot noise of the edge transport in the inverted band HgTe quantum wells. JETP Lett., Vol. 101, no. 10, 2015, pp. 708 – 713. DOI 10.1134/S0021364015100148

  57. Talbo V., Mateos J., Retailleau S., et al.: Time-dependent shot noise in multi-level quantum dot-based single-electron devices. Semiconductor Science and Technology, Vol. 30, no. 5, 2015, Article # 055002. DOI 10.1088/0268-1242/30/5/055002

  58. Lu Hai-Feng, Guo Zhen, Ke Sha-Sha, et al.: Shot noise as a measure of the lifetime and energy splitting of Majorana bound states. J. of Applied Physics, Vol. 117, no. 16, 2015, Article # 164312. DOI 10.1063/1.4919748

  59. Chen Qiao, Zhao Hong-Kang, Xu H.Q.: Shot noise in superconducting wires with a periodic modulation of the chemical potential. Solid State Communications, Vol. 208, 2015, pp. 21 – 24. DOI 10.1016/j.ssc.2015.02.009

  60. Xue Hai-Bin, Nie Yi-Hang, Ren Wei: Negative differential conductance and super-Poissonian shot noise in a single quantum dot coupled to two noncollinear polarized ferromagnetic leads. European Physical Journal B, Vol. 88, no. 3, 2015, Article # 76. DOI 10.1140/epjb/e2015-50760-y

  61. Cornfeld E., Neder I., Sela E.: Fractional shot noise in partially gapped Tomonaga-Luttinger liquids. Physical Review B, Vol. 91, no. 11, 2015, Article # 115427. DOI 10.1103/PhysRevB.91.115427

  62. Xue Hai-Bin, Liang Jiu-Qing, Liu Wu-Ming: Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions. Scientific Reports, Vol. 5, 2015, Article # 8730. DOI 10.1038/srep08730

  63. Iannaccone G., Betti A., Fiori G.: Suppressed and enhanced shot noise in one dimensional field-effect transistors. J. of Computational Electronics, Vol. 14, no. 1, Special Issue: SI, 2015, pp. 94 – 106. DOI 10.1007/s10825-015-0671-7

  64. Keith R.M, Jonathan P.O., Evan J.R., Jonathan P.D., Olson S.J., Rohde P.P.: Linear Optical Quantum Metrology with Single Photons: Exploiting Spontaneously Generated Entanglement to Beat the Shot-Noise Limit. Physical Rev. Lett., Vol. 114, no. 17, 2015, Article # 170802. Erratum: Phys. Rev. Lett., Vol. 118, 079901 (2017).

  65. Macucci M., Marconcini P.: Shot noise suppression due to a magnetic field in disordered conductors. J. of Computational Electronics, Vol. 14, no. 1, Special Issue: SI, 2015, pp. 107 – 113. DOI 10.1007/s10825-014-0647-z

  66. Zhao Hong-Kang, Zou Wei-Ke: Fano-Kondo shot noise in a quantum dot embedded interferometer irradiated with microwave fields. Physics Lett. A, Vol. 379, no. 4, 2015, pp. 389 – 395. DOI 10.1016/j.physleta.2014.11.050

  67. Lai Wenxi, Zhang Chao, Ma Zhongshui: Single molecular shuttle-junction: Shot noise and decoherence. Frontiers of Physics, Vol. 10, no. 1, 2015, pp. 59 – 86. DOI 10.1007/s11467-014-0443-z

  68. Yang Yang, Liu Junyang, Yan Runwen, et al.: Mechanism and Characterization of Electron Transport Through Metal/Molecule/Metal Junctions. Chemical J. of Chinese Universities - Chinese, Vol. 36, no. 1, 2015, pp. 9 – 23. DOI 10.7503/cjcu20140941

  69. Arakawa Tomonori, Shiogai Junichi, Ciorga M., et al.: Shot Noise Induced by Nonequilibrium Spin Accumulation. Physical Review Lett., Vol. 114, no. 1, 2015, Article # 016601. DOI 10.1103/PhysRevLett.114.016601

  70. Burtzlaff A., Weismann A., Brandbyge M., et al.: Shot Noise as a Probe of Spin-Polarized Transport through Single Atoms. Physical Review Lett., Vol. 114, no. 1, 2015, Article # 016602. DOI 10.1103/PhysRevLett.114.016602

  71. Fan Hehong, He Yuanyuan, Sun Xiaohan, et al.: Noise Performance Analyses for TWT electron gun. IEEE Int. Vacuum Electronics Conf. (IVEC), 2015. DOI 10.1109/IVEC.2015.7223997

  72. Tang Tao, Dai Wentao, Gong Huarong, et al.: Numerical Simulation of Noise in Traveling Wave Tube. IEEE Int. Vacuum Electronics Conf. (IVEC), 2015. DOI 10.1109/IVEC.2015.7223978

  73. Zhao H.K., Zhang J., Wang J.: Dynamic spin-flip shot noise of mesoscopic transport through a toroidal carbon nanotube. EPL, Vol. 109, no. 1, 2015, Article # 18003. DOI 10.1209/0295-5075/109/18003

  74. Morakinyo M.K., Rananavare S.B.: Reducing the effects of shot noise using nanoparticles. J. of Materials Chemistry C, Vol. 3, no. 5, 2015, pp. 955 – 959. DOI 10.1039/c4tc01339e

  75. Jompol Y., Roulleau P., Jullien T., et al.: Detecting noise with shot noise using on-chip photon detector. Nature Communications, Vol. 6, 2015, Article # 6130. DOI 10.1038/ncomms7130

  76. Pedro Cascales J., Hong Jhen-Yong, Martinez I., et al.: Superpoissonian shot noise in organic magnetic tunnel junctions. Applied Physics Lett., Vol. 105, no. 23, 2014, Article # 233302. DOI 10.1063/1.4903739

  77. Chen R., Matt M., Pauly F., et al.: Shot noise variation within ensembles of gold atomic break junctions at room temperature. J. of Physics: Condensed Matter, Vol. 26, no. 47, 2014, Article # 474204. DOI 10.1088/0953-8984/26/47/474204

  78. Djidjou T.K., Bevans D.A., Li Sergey, et al.: Observation of Shot Noise in Phosphorescent Organic Light-Emitting Diodes. IEEE Trans on ED, Vol. 61, no. 9, 2014, pp. 3252 – 3257. DOI 10.1109/TED.2014.2339856

  79. Kalsoom Ambreen, Song Siyu, Li Guiqin: Current shot noise characteristics in biphenyl diamine and biphenyl dithiol devices. Applied Physics A - Materials Science & Processing, Vol. 116, no. 3, 2014, pp. 1489 – 1493. DOI 10.1007/s00339-014-8274-x

  80. Zhai Feng, Wang Juan: Shot noise in systems with semi-Dirac points. J. of Applied Physics, Vol. 116, no. 6, 2014, Article # 063704. DOI 10.1063/1.4892843

  81. Nause A., Dyunin E., Gover A.: Short wavelength limits of current shot noise suppression. Physics of Plasmas, Vol. 21, no. 8, 2014, Article # 083114. DOI 10.1063/1.4894110

  82. Tanaka Takahiro, Arakawa Tomonori, Maeda Masahiro, et al.: Leak current estimated from the shot noise in magnetic tunneling junctions. Applied Physics Lett., Vol. 105, no. 4, 2014, Article # 042405. http://dx.doi.org/10.1063/1.4891556

  83. Wiener A. D., Kindermann M.: Effects of the contacts on shot noise in graphene nanoribbons. Physical Review B, Vol. 90, no. 3, 2014, Article # 035409. DOI 10.1103/PhysRevB.90.035409

  84. Wu Shuang, Guo Yong: Spin-dependent shot noise in diluted magnetic semiconductor/semiconductor heterostructures with a nonmagnetic barrier. Physica E - Low-Dimensional Systems & Nanostructures, Vol. 59, 2014, pp. 158 – 162. DOI 10.1016/j.physe.2014.01.013

  85. Borchers B., Anderson A., Steinmeyer G.: On the role of shot noise in carrier- envelope phase stabilization. Laser & Photonics Reviews, Vol. 8, no. 2, 2014, pp. 303 – 315. DOI 10.1002/lpor.201300163

  86. Talbo V., Mateos J., Retailleau S., et al.: Frequency-dependent shot noise in single-electron devices. Proc. of Int. Workshop on Computational Electronics (IWCE), 2014. ISBN:978-1-4799-5433-9

  87. Zhai Feng, Wang Juan: Shot noise in systems with semi-Dirac points. J. of Applied Physics, Vol. 116, no. 6, 2014, Article # 063704. DOI 10.1063/1.4892843

  88. Zhao Hong-Kang, Zou Wei-Ke, Chen Qiao: Shot noise of charge current in a quantum dot responded by rotating and oscillating magnetic fields. J. of Applied Physics, Vol. 116, no. 9, 2014, Article # 093702. DOI 10.1063/1.4894294

  89. Altimiras C., Parlavecchio O., Joyez P., Vion D., Roche P., Esteve D., Portier F.: Dynamical Coulomb Blockade of Shot Noise. Physical Review Lett., Vol. 112, no. 23, 2014, Article # 236803 DOI 10.1103/PhysRevLett.112.236803

  90. Prokeova M., Dvorak J.: Statistics for Inhomogeneous Space-Time Shot-Noise Cox Processes. Methodology & Computing in Applied Probability, Vol. 16, no. 2, Special no. SI, 2014, pp. 433 – 449. DOI 10.1007/s11009-013-9324-0

  91. Iksanov A., Marynych A., Meiners M.: Limit Theorems for Renewal Shot Noise Processes with Eventually Decreasing Response Functions. Stochastic Processes & Their Applications, Vol. 124, no. 6, 2014, pp. 2132 – 2170. DOI 10.1016/j.spa.2014.02.007

  92. Li Jiaming, Luo Le, Carvell J., Cheng Ruihua, Lai Tianshu, Wang Zixin: Shot-Noise-Limited Optical Faraday Polarimetry with Enhanced Laser Noise Cancelling. Journal of Applied Physics, Vol. 115, no. 10, 2014, Article # 103101. DOI 10.1063/1.4867743

  93. Jedidi Wissem: Poisson Shot Noise Traffic Model and Approximation of Significant Functionals. Abstract & Applied Analysis, 2014, Article # 261568. http://dx.doi.org/10.1155/2014/261568

  94. Huang Huaping, Liu De, Zhang Hongmei, Kong Xiaojun: Electronic Transport and Shot Noise in Thue-Morse Sequence Graphene Superlattice. Journal of Applied Physics, Vol. 113, no. 4, 2013, pp. 043702-1 – 043702-6. DOI 10.1063/1.4788676

  95. Tan Z.B., Puska A., Nieminen T., Duerr F., Gould C., Molenkamp L.W., Trauzettel B., Hakonen P.J: Shot Noise in Lithographically Patterned Graphene Nanoribbons. Physical Review B, Vol. 88, no. 24, 2013, Article # 245415. DOI 10.1103/PhysRevB.88.245415

  96. Jang Jiwook, Dassios A.: A Bivariate Shot Noise Self-exciting Process for Insurance. Insurance Mathematics & Economics, Vol. 53, no. 3, 2013, pp. 524 – 532. DOI 10.1016/j.insmatheco.2013.08.003

  97. Pearce A.J., Cavaliere F., Mariani E.: Conductance and Shot Noise in Strained Bilayer Graphene. Journal of Physics: Condensed Matter, Vol. 25, no. 37, 2013, pp. 375301.1 – 375301.10. DOI 10.1088/0953-8984/25/37/375301

  98. Tikhonov E.S., Khrapai V.S., Shovkun D.V., Schuh D.: Finite-size Effect in Shot Noise in Hopping Conduction. JETP Lett., Vol. 98, no. 2, 2013, pp. 121 – 126. DOI 10.1134/S0021364013150150

  99. Babiker Sharief F.: Shot Noise in Resistively Coupled Single Tunnel Junctions. Solid-State Electronics, Vol. 85, 2013, pp. 43 – 47. DOI 10.1016/j.sse.2013.02.061

  100. Quinlan F., Fortier T.M., Jiang Haifeng, Diddams S.A.: Analysis of Shot Noise in the Detection of Ultrashort Optical Pulse Trains. Journal of the Optical Society of America B - Optical Physics, Vol. 30, no. 6, 2013, pp. 1775 – 1785. DOI 10.1364/JOSAB.30.001775

  101. Zhuang Jia Ning, Wang Jian: Conductance Fluctuation and Shot Noise in Disordered Graphene Systems, a Perturbation Expansion Approach. Journal of Applied Physics, Vol. 114, no. 6, 2013, pp 063708.1 – 063708.8. DOI 10.1063/1.4817885

  102. Logoteta D., Marconcini P., Macucci M.: Numerical Simulation of Shot Noise in Disordered Graphene. Int. Conf on Noise and Fluctuations (ICNF), 2013, pp. 1 – 4. DOI 10.1109/ICNF.2013.6578889

  103. Marconcini P., Macucci M., Logoteta D., Totaro M.: Is the Regime with Shot Noise Suppression by a Factor 1/3 Achievable in Semiconductor Devices with Mesoscopic Dimensions? Fluct. Noise Lett., Vol. 11, no. 01, 2012, Article # 1240012. DOI 10.1142/S0219477512400123

  104. Liu Zheng-Fang, Liu Nian-Hua, Wu Qing-Ping: Magnetoresistance and Shot Noise in Graphene-based Nanostructure with Effective Exchange Field. Journal of Applied Physics, Vol. 112, no. 12, 2012, Article # 123719. DOI 10.1063/1.4770494

  105. I.L. Ho, D.S. Chung, M.T. Lee, C.S. Wu, Y.C. Chang, C.D. Chen : Shot noise of multichannel transport in mesoscopic junction systems. J. Appl. Phys. Vol. 111, no 6, 2012, pp 064501 (7 pages) DOI 10.1063/1.3692805 http://jap.aip.org/resource/1/japiau/v111/i6/p064501_s1?isAuthorized=no

  106. Gokce A., Stearrett R., Nowak E.R., Nordman C.: Shot Noise Suppression in Individual and Series Arrays of Magnetic Tunnel Junctions. Fluct. Noise Lett., Vol. 10, no. 04, 2011, 381. DOI 10.1142/S0219477511000648

  107. Chang Bo, Liang Jiu-Qing: Shot noise of the spin inelastic tunneling through a quantum dot with single molecule-magnet. Chinese Phys. B, Vol. 20, no 1, 2011, pp 017307. DOI 10.1088/1674-1056/20/1/017307

  108. Kumar M., Smit R.H.M., van Ruitenbeek J.M., Tal O.: Inelastic scattering effects and electronic shot noise. 21st Int. Conf. on Noise and Fluctuations (ICNF), 12-16 June 2011, pp 376 – 380. DOI 10.1109/ICNF.2011.5994347

  109. Sayer R.A., Sunkook Kim, Franklin A.D., Mohammadi S., Fisher T.S.: Shot Noise Thermometry for Thermal Characterization of Templated Carbon Nanotubes. IEEE Trans. on Components and Packaging Technologies, vol. 33, no. 1, 2010, pp. 178 – 183. DOI 10.1109/TCAPT.2009.2038488

  110. Sekiguchi K, Arakawa T, Yamauchi Y, Chida K, Yamada M, Takahashi H, Chiba D, Kobayashi K, Ono T.: Observation of full shot noise in CoFeB/MgO/CoFeB-based magnetic tunneling junctions. Applied Physics Letters, Vol. 96, no 25, 2010, pp 252504 – 252504-3. DOI 10.1063/1.3456548

  111. Graffeuil J, Liman R.A, Muraro J.L, Llopis O.: Cyclostationary Shot-Noise Measurements in RF Schottky-Barrier Diode Detectors. IEEE Electron Device Letters, Vol. 31, no 1, 2010, pp 74 – 76. DOI 10.1109/LED.2009.2035339

  112. Khunkhao S, Umjaruan C, Thaworn A, Nuanloy S, Niemcharoen S, Ruangphanit A, Phongphanchanthra N, Sato K.: Shot noise behavior of planar Mo/n-Si/Mo photodetector structure in avalanche mode. Int. Conf. on Electrical Eng./Electronics Computer Telecommunications and Information Technology (ECTI-CON), 2010, pp 1137 – 1141. Print ISBN: 978-1-4244-5606-2

  113. P. J. Wheeler, J. N. Russom, K. Evans, N. S. King, D. Natelson : Shot Noise Suppression at Room Temperature in Atomic-Scale Au Junctions. Nano Lett., Vol. 10, no 4, 2010, pp 1287 – 1292 DOI:10.1021/nl904052r

  114. Yositake Takane : Nonuniversal Shot Noise in Disordered Quantum Wires with Channel-Number Imbalance. J. Phys. Soc. Jpn., Vol. 79, 2010, pp 104706 (4 pages) DOI 10.1143/JPSJ.79.104706

  115. Jeon J, Lee J, Kim J, Park C.H, Lee H, Oh H, Kang H.-K, Park B.-G, Shin H.: The first observation of shot noise characteristics in 10-nm scale MOSFETs. Symp. on VLSI Technology, 2009, pp 48 – 49. Print ISBN: 978-1-4244-3308-7

  116. Betti A, Fiori G, Iannaccone G.: Shot Noise Suppression in Quasi-One-Dimensional Field-Effect Transistors. Trans. on ED, Vol. 56, no 9, 2009, pp 2137 – 2143. DOI 10.1109/TED.2009.2026512

  117. Hoshino K, Zhang Deng, Nishimura T.H.: Reduction of photon shot noise using M-transform. IEEE Int. Symp. on Industrial Electronics (ISIE 2009), 2009, pp 560 – 564. DOI 10.1109/ISIE.2009.5217936

  118. Gong Yiyang, Guo Yong: Magnetically induced enhancement of shot noise in graphene-based structures. Journal of Applied Physics, Vol. 105, no 6, 2009, pp 063717 – 063717-4. DOI 10.1063/1.3103306

  119. Betti A, Fiori G, Iannaccone G.: Shot noise in quasi one-dimensional FETs. IEEE Int. Electron Devices Meeting (IEDM 2008), 2008, pp 1 – 4. DOI 10.1109/IEDM.2008.4796648

  120. Bing Dong, Lei X.L, Horing N.J.M.: Robust Negative Differential Conductance and Enhanced Shot Noise in Transport Through a Molecular Transistor With Vibration Assistance. IEEE Sensors Journal, Vol. 8, no 6, 2008, pp 885 – 890. DOI 10.1109/JSEN.2008.923271

  121. Teng Chen, Madey J.M.J.: Effects of Electron Shot Noise and Quantum Field Fluctuations on the Photon Statistics of the Coherent Spontaneous Harmonic Radiation. IEEE Journal of Quantum Electronics, Vol. 44, no 3, 2008, pp 294 – 302. DOI 10.1109/JQE.2007.912464

  122. Rudolph M, Korndorfer F, Heymann P, Heinrich W.: Compact Large-Signal Shot-Noise Model for HBTs. Trans. on MTT, Vol. 56, no 1, 2008, pp 7 – 14. DOI 10.1109/TMTT.2007.911944

  123. Song W., Chong Y., Kim K.-T.: Setup of shot noise measurement in a tunnel junction for noise thermometry. Conf. on Precision Electromagnetic Measurements Digest (CPEM 2008), 2008, pp 138 – 139. DOI 10.1109/CPEM.2008.4574691

  124. Sayer R.A, Fisher T.S.: Shot noise thermometry with carbon nanotubes. 11th Intersociety Conf. on Thermal and Thermomec. Phenomena in Electronic Syst. (ITHERM 2008), 2008, pp 931 – 936. DOI 10.1109/ITHERM.2008.4544367

  125. Yan Cui, Guofu Niu, Rezvani A, Taylor S.S.: Measurement and Modeling of Drain Current Thermal Noise to Shot Noise Ratio in 90nm CMOS. IEEE Topical Meeting on Silicon Monolithic IC in RF Systems (SiRF 2008), 2008, pp 118 – 121. DOI 10.1109/SMIC.2008.36

  126. He Yuhui, Hou Danqiong, Han Ruqi: Spin-current shot noise in mesoscopic conductors. Journal of Applied Physics, Vol. 101, no 2, 2007, pp 023710 – 023710-7. DOI 10.1063/1.2430925

  127. Hui Li, Zhenqiang Ma, Guofu Niu: Transport shot noise models and NFmin comparison for SiGe HBTs under different operation configurations. Microwave Integrated Circuit Conf., 2007. EuMIC 2007. European , Vol. , no , pp 203-206, 8-10 Oct. 2007 DOI 10.1109/EMICC.2007.4412684

  128. Cho B, Itagaki T, Oshima C.: Record of the lowest frequency shot noise measurement below 10 Hz. Applied Physics Letters, Vol. 91, no 5, 2007, pp 051916 – 051916-3. DOI 10.1063/1.2767234

  129. Ang L.K, Wu L.: Shot Noise of High Current Electron Field Emission. IEEE 34th Int. Conf. on Plasma Science, (ICOPS 2007), 2007, pp 580. DOI 10.1109/PPPS.2007.4345886

  130. Zhu Rui, Guo Yong: Current shot noise characteristics in resonant tunneling step-barrier structures. Journal of Applied Physics, Vol. 102, no 8, 2007, pp 083706 – 083706-7. DOI 10.1063/1.2798515

  131. An Xing-Tao, Liu Jian-Jun: Shot noise of spin-dependent currents in ferromagnetic/semiconductor/ferromagnetic heterojunctions. Journal of Applied Physics, Vol. 102, no 12, 2007, pp 123706 – 123706-6. DOI 10.1063/1.2825405

  132. Rudolph M, Heymann P.: Comparative study of shot-noise models for HBTs. European Microwave Integrated Circuit Conf. (EuMIC 2007), 2007, pp 191 – 194. DOI 10.1109/EMICC.2007.4412681

  133. Zhu Rui, Guo Yong: Shot noise in the graphene-based double-barrier structures. Applied Physics Letters, Vol. 91, no 25, 2007, pp 252113-252113-3 DOI 10.1063/1.2825571

  134. Tempel M, Boeck G.: Shot-Noise Analysis in Circuits with Large Signal Excitations using Harmonic Balance Simulators. 13th IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS '06), 2006, pp 581 – 583. DOI 10.1109/ICECS.2006.379855

  135. Ridolfi A, Win M.Z.: Ultrawide bandwidth signals as shot noise: a unifying approach. IEEE Journal on Selected Areas in Communications, Vol. 24, no 4, 2006, pp 899 – 905. DOI 10.1109/JSAC.2005.863881

  136. Jagadish Venkataraman, Haenggi M, Collins O.: Shot Noise Models for Outage and Throughput Analyses in Wireless Ad Hoc Networks. IEEE Military Communications Conf. (MILCOM 2006), 2006, pp 1 – 7. DOI 10.1109/MILCOM.2006.302418

  137. Yuhui He, Danqiong Hou, Xiaoyan Liu, Ruqi Han: Spin-Current Shot Noise in Spin Transitors. 8th Int. Conf. on Solid-State and IC Technology (ICSICT '06), 2006, pp 1086 – 1088. DOI 10.1109/ICSICT.2006.306689

  138. Neureuther A. R, Pease R. F. W, Yuan L, Baghbani Parizi K, Esfandyarpour H, Poppe W. J, Liddle J. A, Anderson E. H.: Shot noise models for sequential processes and the role of lateral mixing. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 24, no 4, 2006, pp 1902 – 1908. DOI 10.1116/1.2218875

  139. Aghassi J., Thielmann A., Hettler M. H, Schon G.: Strongly enhanced shot noise in chains of quantum dots. Applied Physics Letters, Vol. 89, no 5, 2006, pp 052101 – 052101-3. DOI 10.1063/1.2260827

  140. Andersson S, Svensson C.: Direct experimental verification of shot noise in short channel MOS transistors. Electronics Letters, Vol. 41, no 15, 2005, pp 869 – 871. DOI 10.1049/el:20051474

  141. Spear J. D.: Shot noise in x-ray measurements with p-i-n diodes. Review of Scientific Instruments, Vol. 76, no 7, 2005, pp 076101 – 076101-3. DOI 10.1063/1.1947776

  142. Djuric I., Dong Bing, Cui H. L.: Super-Poissonian shot noise in the resonant tunneling due to coupling with a localized level. Applied Physics Letters, Vol. 87, no 3, 2005, pp 032105 – 032105-3. DOI 10.1063/1.1999020

  143. Roschier L., Heikkila T. T, Hakonen P.: Cyclostationary shot noise in mesoscopic measurements. Journal of Applied Physics, Vol. 96, no 10, 2004, pp 5927 – 5929. DOI 10.1063/1.1803103

  144. Gillingham D.R, Antonsen T.M. Jr.: Linear theory of shot noise in harmonic gyroklystrons and gyro-TWT amplifiers. IEEE Trans. on Plasma Science, Vol. 32, no 3, 2004, pp 987 – 993. DOI 10.1109/TPS.2004.827583

  145. Mallinson J.C.: Analogy between magnetic recording media noise and shot noise. IEEE Trans. on Magnetics, Vol. 40, no 5, 2004, pp 3407 – 3410. DOI 10.1109/TMAG.2004.832762

  146. McNeil B.W.J, Robb G.R.M, Poole M.W.: A numerical model of electron beam shot noise. Proc. of the Particle Accelerator Conf. (PAC 2003), Vol. 2, 2003, pp 950 – 952. DOI 10.1109/PAC.2003.1289559

  147. Pouyet V, Brown E.R.: Shot-noise reduction in multiple-quantum-well resonant tunneling diodes. Trans. on ED, Vol. 50, no 4, 2003, pp 1063 – 1068. DOI 10.1109/TED.2003.811414

  148. Krishnan R., Cahay M.: Transition from sub-Poissonian to super-Poissonian shot noise in planar cold cathodes. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 21, no 4, 2003, pp 1278 – 1285. DOI 10.1116/1.1575251

  149. Fiegna C.: Analysis of gate shot noise in MOSFETs with ultrathin gate oxides. IEEE Electron Device Letters, Vol. 24, no 2, 2003, pp 108 – 110. DOI 10.1109/LED.2002.807695

  150. Ilyasov Yu.P.: Shot noise and radio telescope sensitivity. 4th Int. Conf. on Antenna Theory and Techniques, Vol. 2, 2003, pp 648 – 650. DOI 10.1109/ICATT.2003.1238826

  151. Iannaccone G, Crupi F, Neri B, Lombardo S.: Theory and experiment of suppressed shot noise in stress-induced leakage currents. Trans. on ED, Vol. 50, no 5, 2003, pp 1363 – 1369. DOI 10.1109/TED.2003.812500

  152. Dallakyan S., Mazumdar S.: Sub-Poissonian shot noise in molecular wires. Applied Physics Letters, Vol. 82, no 15, 2003, pp 2488 – 2490. DOI 10.1063/1.1567805

  153. Gomila G, Cantalapiedra I. R, Reggiani L.: Unipolar transport and shot noise in metal–semiconductor–metal structures. Journal of Applied Physics, Vol. 93, no 1, 2003, pp 375 – 383. DOI 10.1063/1.1525863

  154. Ferrari G, Sampietro M, Bertuccio G, Gomila G, Reggiani L.: On the origin of shot noise in CdTe detectors. Applied Physics Letters, Vol. 83, no 12, 2003, pp 2450 – 2452. DOI 10.1063/1.1611648

  155. George P.K, Wu Y, White R.M, Murdock Ed, Tondra M.: Shot noise in low-resistance magnetic tunnel junctions. Applied Physics Letters, Vol. 80, no 4, 2002, pp 682 – 684. DOI 10.1063/1.1446210

  156. Moller J., Heinernann B., Herzel F.: An improved model for high-frequency noise in BJTs and HBTs interpolating between the quasi-thermal approach and the correlated-shot-noise model. Proc. of the 2002 Bipolar/BiCMOS Circuits and Technology Meeting, 2002, pp 228 – 231. DOI 10.1109/BIPOL.2002.1042924

  157. Manheimer W.M.: Uniform plasma model of shot noise in gyroklystrons. IEEE Trans. on Plasma Science, Vol. 29, no 4, 2001, pp 639 – 648. DOI 10.1109/27.940959

  158. Blanter Ya.M., Buttiker M.: Shot noise in mesoscopic conductors. Physics Reports, Vol. 336, 2000, pp. 1 – 166.

  159. Gomila G., Reggiani L., Rubi J.M.: Shot-noise suppression in Schottky barrier diodes. Journal of Applied Physics, Vol. 88, no 5, 2000, pp 3079 – 3081. DOI 10.1063/1.1288219

  160. Lau Y.Y, Jensen K.L, Levush B.: A comparison of flicker noise and shot noise on a hot cathode. IEEE Trans. on Plasma Science, Vol. 28, no 3, 2000, pp 794 – 797. DOI 10.1109/27.887726

  161. Petropulu A.P, Pesquet J.-C, Xueshi Yang: Power-law shot noise and its relationship to long-memory α-stable processes. IEEE Trans. on Signal Processing, Vol. 48, no 7, 2000, pp 1883 – 1892. DOI 10.1109/78.847775

  162. Iannaccone G, Crupi F, Neri B, Lombardo S.: Suppressed shot noise in trap-assisted tunneling of metal–oxide–semiconductor capacitors. Applied Physics Letters, Vol. 77, no 18, 2000, pp 2876 – 2878. DOI 10.1063/1.1321735

  163. Santos D.J, Fraile-Pelaez F.J.: Pulse normalisation in optical receiver shot-noise performance. IEE Proc. - Optoelectronics, Vol. 146, no 4, 1999, pp 201 – 203. DOI 10.1049/ip-opt:19990637

  164. Luginbuhl T.E, Streit R.L.: Incorporating amplitude information into the PMHT using shot-noise models. IEE Colloquium on Target Tracking: Algorithms and Applications (Ref. no 1999/090, 1999/215), 1999, pp 13/1. DOI 10.1049/ic:19990514

  165. Antonsen T.M, Manheimer W.M.: Shot noise in gyroklystrons. IEEE Trans. on Plasma Science, Vol. 26, no 3, 1998, pp 444 – 450. DOI 10.1109/27.700776

  166. Sequeira R.E, Gubner J.A.: Blind intensity estimation from shot-noise data. IEEE Trans. on Signal Processing, Vol. 45, no 2, 1997, pp 421 – 433. DOI 10.1109/78.554306

  167. Doo-Sik Shin, Lee J.B, Hong Shick Min, Jae-Eung Oh, Young June Park, Woong Jung, Dong Sung Ma: Analytical noise model with the influence of shot noise induced by the gate leakage current for submicrometer gate-length high-electron-mobility transistors. Trans. on ED, Vol. 44, no 11, 1997, pp 1883 – 1887. DOI 10.1109/16.641356

  168. Hayat M.M, Saleh B.E.A, Gubner J.A.: Shot-noise-limited performance of optical neural networks. IEEE Trans. on Neural Networks, Vol. 7, no 3, 1996, pp 700 – 708. DOI 10.1109/72.501727

  169. Kaplan B.-Z, Paperno E, Frumkis L.: The duality that relates magnetic noise to electric shot noise. IEEE Trans. on Magnetics, Vol. 32, no 5, 1996, pp 4914 – 4916. DOI 10.1109/20.539286

  170. Sequeira R.E, Gubner J.A.: Intensity estimation from shot-noise data. IEEE Trans. on Signal Processing, Vol. 43, no 6, 1995, pp 1527 – 1531. DOI 10.1109/78.388871

  171. Dubash N.B, Wengler M.J, Zmuidzinas J.: Shot noise and photon-induced correlations in 500 GHz SIS detectors. IEEE Trans. on Applied Superconductivity, Vol. 5, no 2, 1995, pp 3308 – 3311. DOI 10.1109/77.403299

  172. Edwards P.J.: Reduction of optical shot noise from light emitting diodes. IEEE Journal of Quantum Electronics, Vol. 29, no 8, 1993, pp 2302 – 2305. DOI 10.1109/3.245558

  173. Brown E.R.: Analytical model of shot noise in double-barrier resonant-tunneling diodes. Trans. on ED, Vol. 39, no 12, 1992, pp 2686 – 2693. DOI 10.1109/16.168748

  174. Han J, Barnes F.S.: A theory of shot noise in quantum wells and applications in resonant tunneling heterojunction bipolar transistors. Trans. on ED, Vol. 38, no 2, 1991, pp 237 – 241. DOI 10.1109/16.69900

  175. Lowen S.B, Teich M.C.: Power-law shot noise. IEEE Trans. on Information Theory, Vol. 36, no 6, 1990, pp 1302 – 1318. DOI 10.1109/18.59930

  176. Cowley A.M, Zettler R.A.: Shot noise in silicon Schottky barrier diodes. Trans. on ED, Vol. 15, no 10, 1968, pp 761 – 769. DOI 10.1109/T-ED.1968.16512

  177. Fujii Y, Saito S.: Measurement of the shot-noise reduction factor. Trans. on ED, Vol. 14, no 4, 1967, pp 207 – 214. DOI 10.1109/T-ED.1967.15930

  178. Tiemann J.J.: Shot Noise in Tunnel Diode Amplifiers. Proc. of the IRE, Vol. 48, no 8, 1960, pp 1418 – 1423. DOI 10.1109/JRPROC.1960.287568

  179. Schneider B, Strutt M.J.O.: Shot and Thermal Noise in Germanium and Silicon Transistors at High-Level Current Injections. Proc. of the IRE, Vol. 48, no 10, 1960, pp 1731 – 1739. DOI 10.1109/JRPROC.1960.287525

  180. Van der Ziel A.: Theory of Shot Noise in Junction Diodes and Junction Transistors. Proc. of the IRE , Vol. 43, no 11, 1955, pp 1639 – 1646. DOI 10.1109/JRPROC.1955.277990

  181. Sard R. D.: Calculated Frequency Spectrum of the Shot Noise from a Photo‐Multiplier Tube. Journal of Applied Physics, Vol. 17, 1946, no 10, pp 768 – 777. DOI 10.1063/1.1707645

 

Back to top list


        Thermal noise

  1. Qu Jifeng, Benz S.P., Coakley K., et al.: An improved electronic determination of the Boltzmann constant by Johnson noise thermometry. Metrologia, Vol. 54, no. 4, 2017, pp. 549 – 558. DOI 10.1088/1681-7575/aa781e

  2. Coakley K.J., Qu Jifeng: Spectral model selection in the electronic measurement of the Boltzmann constant by Johnson noise thermometry. Metrologia, Vol. 54, no. 2, 2017, pp. 204 – 217. DOI 10.1088/1681-7575/aa5d21

  3. Kroker S., Dickmann J., Hurtado C.B.R., et al.: Brownian thermal noise in functional optical surfaces. Physical Review D, Vol. 96, no. 2, 2017, Article # 022002. DOI 10.1103/PhysRevD.96.022002

  4. Sahu Yogendra, Kushwaha Pragya, Dasgupta Avirup, et al.: Compact Modeling of Drain Current Thermal Noise in FDSOI MOSFETs Including Back-Bias Effect. IEEE Trans on MTT, Vol. 65, no. 7, 2017, pp. 2261 – 2270. DOI 10.1109/TMTT.2017.2666811

  5. Kornev V.K., Kolotinskiy N.V., Levochkina A.Yu., et al.: Critical Current Spread and Thermal Noise in Bi-SQUID Cells and Arrays. IEEE Trans on Applied Superconductivity, Vol. 27, no. 4, 2017, Article # 1601005. DOI 10.1109/TASC.2016.2632125

  6. Lee Kie-Young: Analysis of the impedance field of saturated MOSFETs and drain thermal noise. Solid-State Electronics, Vol. 130, 2017, pp. 63 – 69. DOI 10.1016/j.sse.2017.01.012

  7. Martinovic M.M., Zaslavsky A., Maksimovic M., et al.: Electrostatic thermal noise in a weakly ionized collisional plasma. Radio Science, Vol. 52, no. 1, 2017, pp. 70 – 77. DOI 10.1002/2016RS006189

  8. Gillard N., Belin E., Chapeau-Blondeau F.: Stochastic antiresonance in qubit phase estimation with quantum thermal noise. Physics Lett. A, Vol. 381, no. 32, 2017, pp. 2621 – 2628. DOI 10.1016/j.physleta.2017.06.009

  9. Im Saemin, Park Sang-Gyu: Thermal noise analysis of switched-capacitor integrators with correlated double sampling. Int. J. of Circuit Theory and Applications, Vol. 44, no. 12, 2016, pp. 2101 – 2113. DOI 10.1002/cta.2214

  10. Zhu Zhi, Sheng Nan, Fang Haiping, et al.: Colored spectrum characteristics of thermal noise on the molecular scale. Physical Chemistry Chemical Physics, Vol. 18, no. 43, 2016, pp. 30189 – 30195. DOI 10.1039/c6cp04433f

  11. Wang Bingbing, Wang Xiaodong, Chen Xiaoyao, et al.: Experimental and theoretical research on noise behaviors of epitaxial Si: P blocked-impurity-band detectors. Optical and Quantum Electronics, Vol. 48, no. 11, 2016, Article # 517. DOI 10.1007/s11082-016-0777-6

  12. Pathan A., Liscidini A.: Thermal noise limit for time-domain analogue signal processing in CMOS technologies. Electronics Lett., Vol. 52, no. 18, 2016, pp. 1567 – 1568. DOI 10.1049/el.2016.1908

  13. Sharma S.M., Dasgupta S., Kartikeyan M.V.: A transformed analytical model for thermal noise of FinFET based on fringing field approximation. J. of Semiconductors, Vol. 37, no. 9, 2016, Article # 094001. DOI 10.1088/1674-4926/37/9/094001

  14. Kish L.B., Niklasson G.A., Granqvist C.-G.: Zero Thermal Noise in Resistors at Zero Temperature. Fluct. & Noise Lett., Vol. 15, no. 3, Special Issue: SI, 2016, Article # 1640001. DOI 10.1142/S0219477516400010

  15. Mizrahi A., Locatelli N., Grollier J., et al.: Synchronization of electrically coupled stochastic magnetic oscillators induced by thermal and electrical noise. Physical Review B, Vol. 94, no. 5, 2016, Article # 054419. DOI 10.1103/PhysRevB.94.054419

  16. Sahoo Bibhu Datta, Inamdar Amol: Thermal-Noise-Canceling Switched-Capacitor Circuit. IEEE Trans on CAS II: Express Briefs, Vol. 63, no. 7, 2016, pp. 628 – 632. DOI 10.1109/TCSII.2016.2530878

  17. Kramer T., Kreisbeck C., Riha C., et al.: Thermal energy and charge currents in multi-terminal nanorings. AIP Advances, Vol. 6, no. 6, 2016, Article # 065306. DOI 10.1063/1.4953812

  18. Urano Chiharu, Yamada Takahiro, Maezawa Masaaki, et al.: Johnson Noise Thermometry Based on Integrated Quantum Voltage Noise Source. IEEE Trans on Applied Superconductivity, Vol. 26, no. 3, 2016, Article # 1800305. DOI 10.1109/TASC.2016.2524472

  19. Park Chan Hyeong, Chung In-Young: Modeling of Electrolyte Thermal Noise in Electrolyte-Oxide-Semiconductor Field-Effect Transistors. J. of Semiconductor Technology & Science, Vol. 16, no. 1, 2016, pp. 106 – 111. DOI 10.5573/JSTS.2016.16.1.106

  20. Froehlich Juerg, Schenker Jeffrey: Quantum Brownian motion induced by thermal noise in the presence of disorder. J. of Mathematical Physics, Vol. 57, no. 2, 2016, Article # 023305. DOI 10.1063/1.4942233

  21. Xu G., Zhang L., Liu J., et al.: Estimation of thermal noise for spindle optical reference cavities. Optics Communications, Vol. 360, 2016, pp. 61 – 67. DOI 10.1016/j.optcom.2015.10.029

  22. Dong Jing, Huang Junchao, Li Tang, et al.: Observation of fundamental thermal noise in optical fibers down to infrasonic frequencies. Applied Physics Lett., Vol. 108, no. 2, 2016, Article # 021108. DOI 10.1063/1.4939918

  23. Donato M., Bahar R.I., Patterson W., et al.: A Fast Simulator for the Analysis of Sub-Threshold Thermal Noise Transients. 53rd ACM/EDAC/IEEE Design Automation Conf. (DAC), 2016. DOI 10.1145/2897937.2897960

  24. Sharma S. Madhulika, Dasgupta S., Kartikeyan M.V.: A Review of Analytical Thermal Noise Model. Proc of IEEE Conf. on Emerging Devices and Smart Systems (ICEDSS), 2016, pp. 19 – 23.

  25. Underhill Michael J.: Oscillator Resistor Noise Optimisation Paradigm. Proc. of IEEE Int. Frequency Control Symp. (IFCS), 2016, pp. 377 – 381.

  26. Matei D.G., Legero T., Grebing Ch, et al.: A second generation of low thermal noise cryogenic silicon resonators. 8th Symp. on Frequency Standards and Metrology, Book Series: Journal of Physics Conf. Series, Vol. 723, 2016, Article # UNSP 012031. DOI 10.1088/1742-6596/723/1/012031

  27. Tothova Jana, Lisy Vladimir: Statistical Properties of Thermal Noise Driving the Brownian Particles in Fluids. Conf. on Mathematical Modeling and Computational Physics (MMCP), Book Series: EPJ Web of Conferences, Vol. 108, Article # 02044, 2016. DOI 10.1051/epjconf/201610802044

  28. Nguyen Thanh T-H., Mow-Lowry C.M., Slagmolen B.J.J., et al.: Frequency dependence of thermal noise in gram-scale cantilever flexures. Physical Review D, Vol. 92, no. 11, 2015, Article # 112004. DOI 10.1103/PhysRevD.92.112004

  29. Sandoval F.A., Sepulveda M., Bellon L., et al.: High Resolution Viscosity Measurement by Thermal Noise Detection. Sensors, Vol. 15, no. 11, 2015, pp. 27905 – 27916. DOI 10.3390/s151127905

  30. Qu Jifeng, Benz S.P., Pollarolo A., et al.: Improved electronic measurement of the Boltzmann constant by Johnson noise thermometry. Metrologia, Vol. 52, no. 5, 2015, pp. S242 – S256. DOI 10.1088/0026-1394/52/5/S242

  31. Chee Jingyee, Yoo, Hosang, Qi, Ling, Ham Donhee: Plasmonic mass and Johnson-Nyquist noise. Nanotechnology, Vol. 26, no. 35, 2015, Article # 354002. DOI 10.1088/0957-4484/26/35/354002

  32. Mahjoub A.M., Suzuki Shinichi, Ouchi Takahiro, et al.: Terahertz bolometric detection by thermal noise in graphene field effect transistor. Applied Physics Lett., Vol. 107, no. 8, 2015, Article # 083506. DOI 10.1063/1.4929768

  33. Chida Kensaku, Nishiguchi Katsuhiko, Yamahata Gento, et al.: Thermal-noise suppression in nano-scale Si field-effect transistors by feedback control based on single-electron detection. Applied Physics Lett., Vol. 107, no. 7, 2015, Article # 073110. DOI 10.1063/1.4928656

  34. Crosser M.S., Brown M.A., McEuen P.L., et al.: Determination of the Thermal Noise Limit of Graphene Biotransistors. NANO Lett., Vol. 15, no. 8, 2015, pp. 5404 – 5407. DOI 10.1021/acs.nanolett.5b01788

  35. Serra E., Bonaldi M., Borrielli A., et al.: Low loss single-crystal silicon mechanical resonators for the investigation of thermal noise statistical properties. Sensors & Actuators A - Physical, Vol. 227, 2015, pp. 48 – 54. DOI 10.1016/j.sna.2015.03.037

  36. Steinlechner J., Martin I.W., Hough J., et al.: Thermal noise reduction and absorption optimization via multimaterial coatings. Physical Review D, Vol. 91, no. 4, 2015, Article # 042001. DOI 10.1103/PhysRevD.91.042001

  37. Yam W., Gras S., Evans M.: Multimaterial coatings with reduced thermal noise. Physical Review D, Vol. 91, no. 4, 2015, Article # 042002. DOI 10.1103/PhysRevD.91.042002

  38. Popov V.V., Ovsyanikov V.V.: Thermal Noise of Microwave Antennas. IEEE Loughborough Antennas & Propagation Conf. (LAPC), 2015. DOI 10.1109/LAPC.2015.7366132

  39. Hoe D.H.K., Jin Xiaoyu: The Design of Low Noise Amplifiers in Deep Submicron CMOS Processes: A Convex Optimization Approach. VLSI Design, 2015, Article # UNSP 312639. DOI 10.1155/2015/312639

  40. Grivet-Talocia S., Signorini G., Olivadese S.B., et al.: Thermal Noise Compliant Synthesis of Linear Lumped Macromodels. IEEE Trans on Components, Packaging & Manufacturing Technology, Vol. 5, no. 1, 2015, pp. 75 – 85. DOI 10.1109/TCPMT.2014.2370096

  41. Mohammadi A., Moheimani S.O.R., Yuce M.R.: Parallel Averaging for Thermal Noise Mitigation in MEMS Electrothermal Displacement Sensors. J. of Microelectromechanical Systems, Vol. 24, no. 1, 2015, pp. 4 – 6. DOI 10.1109/JMEMS.2014.2364588

  42. Jifeng Qu, Samuel P.B., Alessio P., Horst R., Weston L.T, Rod White, Kunli Zhou: Improved electronic measurement of the Boltzmann constant by Johnson noise Thermometry. Metrologia, Vol. 52, no. 5, 2015, S233 – S241. https://doi.org/10.1088/0026-1394/52/5/S242

  43. Goryachev M., Ivanov E.N., van Kann F., et al.: Observation of the fundamental Nyquist noise limit in an ultra-high Q-factor cryogenic bulk acoustic wave cavity. Applied Physics Lett., Vol. 105, no. 15, 2014, Article # 13505. DOI 10.1063/1.4898813

  44. Petersen C.F., Krausz E., Evans D.J., et al.: Theoretical Analysis of the Fluctuation Theorem Applied to Electric Circuits. Communications in TheoreticaL Physics, Vol. 62, no. 4, 2014, pp. 476 – 484. Accession # WOS:000345826400005

  45. Yoon Peter H.: Electron kappa distribution and quasi-thermal noise. J. of Geophysical Research - Space Physics, Vol. 119, no. 9, 2014 DOI 10.1002/2014JA020353

  46. Swain S.K., Adak S., Pati S.K., et al.: Analysis of flicker and thermal noise in p-channel Under lap DG FinFET. Microelectronics Reliability, Vol. 54, no. 8, 2014, pp. 1549 – 1554. DOI 10.1016/j.microrel.2014.04.002

  47. Nishiguchi Katsuhiko, Ono Yukinori, Fujiwara Akira: Single-electron thermal noise. Nanotechnology, Vol. 25, no. 27, 2014, Article # 275201. DOI 10.1088/0957-4484/25/27/275201

  48. Syms R.R.A., Solymar L.: Loss and thermal noise in plasmonic waveguides. J. of Applied Physics, Vol. 115, no. 21, 2014, Article # # 213103. DOI 10.1063/1.4880663

  49. Kapusta R., Zhu H., Lyden C.: Sampling Circuits That Break the kT/C Thermal Noise Limit. IEEE Journal of SSC, Vol. 49, no. 8, 2014, pp. 1694 – 1701. DOI 10.1109/JSSC.2014.2320465

  50. Panda S., Maji B., Mukherjee C., Mukhopadhyay A.K.: Thermal Noise Analysis of SGMOSFET for Different Substrate and Gate Oxides. Int. Conf. on Circuits, Power and Computing Technologies (ICCPCT), 2013, pp. 765 – 770. DOI 10.1109/ICCPCT.2013.6528839

  51. Liang Z, Sarkar P., Chakrabartty S.: Scavenging Thermal-Noise Energy for Implementing Long-Term Self-Powered CMOS Timers. IEEE Int. Symp on Circuits & Systems (ISCAS), 2013, pp. 2203 – 2206. DOI 10.1109/ISCAS.2013.6572313

  52. Schurr J., Ahlers F., Callegaro L.: Noise and Correlation Study of Quantum Hall Devices. IEEE Trans on Instr. & Meas., Vol. 62, no. 6, 2013, pp. 1574 – 1580. DOI 10.1109/TIM.2012.2230733

  53. Antonopoulos A, Bucher M., Papathanasiou K., Mavredakis N., Makris N., Sharma R.K., Sakalas P., Schroter M.: CMOS Small-Signal and Thermal Noise Modeling at High Frequencies. IEEE Trans on ED, Vol. 60, no. 11, 2013, pp. 3726 – 3733. DOI 10.1109/TED.2013.2283511

  54. Santagati P., Beiu V.: Will Thermal Noise Affect Nano-Communications? Int. Conf. on Communications, Signal Processing, and their Applic. (ICCSPA), 2013, pp. 1 – 4. DOI 10.1109/ICCSPA.2013.6487322

  55. Eui-Young Jeong, Yoon-Ha Jeong, Chih-Hung Chen, Deen M.J.: DC and Thermal Noise Modeling of 20 nm Double-Gate Junctionless MOSFETs. Int. Conf on Noise and Fluctuations (ICNF), 2013, pp.1 – 4. DOI 10.1109/ICNF.2013.6578976

  56. Kish L. B.: Thermal noise driven heat engines: Noise put to work, while it sheds light on “quantum heat engine weirdness". 21st Int. Conf. on Noise and Fluctuations (ICNF), 12-16 June 2011, pp 119 – 122. DOI 10.1109/ICNF.2011.5994278

  57. Chaste J., Pallecchi E., Morfin P., Feve G., Kontos T., Berroir J.-M., Hakonen P., Placais B.: Thermal shot noise in top-gated single carbon nanotube field effect transistors. Applied Physics Letters, vol. 96, no. 19, 2010, pp. 192103 – 192103-3. DOI 10.1063/1.3425889

  58. Duan L.Z.: Intrinsic thermal noise of optical fibres due to mechanical dissipation. Electronics Letters, Vol. 46, no 22, 2010, pp 1515 – 1516. DOI 10.1049/el.2010.1653

  59. Nilchi A, Johns D.A.: Analysis of thermal noise and the effect of parasitics in the charge-pump integrator. 2010 Conf. on Ph.D. Research in Microelectronics and Electronics (PRIME), 2010, pp 1 – 4. Print ISBN: 978-1-4244-7905-4

  60. Lindeman M. A, Dirks B, van der Kuur J, de Korte P. A. J, den Hartog R. H, Gottardi L, Hijmering R. A, Hoevers H. F. C, Khosropanah P.: Relationships Between Complex Impedance, Thermal Response, and Noise in TES Calorimeters and Bolometers. IEEE Trans. on Applied Superconductivity, Vol. PP, no 99, 2010 pp 1- 4., DOI 10.1109/TASC.2010.2096173

  61. Ong S.N, Yeo K.S, Chew K.W.J, Chan L.H.K, Loo X.S, Do M.A, Boon C.C.: Analytical high frequency channel thermal noise modeling in deep sub-micron MOSFETs. Proc. of the 12th Int. Symp. on Integrated Circuits (ISIC '09), 2009, pp 306 – 309. Print ISBN: 978-9-8108-2468-6

  62. Ong S.N, Chew K.W.J, Yeo K.S, Chan L.H.K, Loo X.S, Boon C.C, Do M.A.: A new unified model for channel thermal noise of deep sub-micron RFCMOS. IEEE Int. Symp. on Radio-Frequency Integration Technology (RFIT 2009), 2009, pp 280 – 283. DOI 10.1109/RFIT.2009.5383701

  63. Goldie D. J, Audley M. D, Glowacka D. M, Tsaneva V. N, Withington S.: Thermal models and noise in transition edge sensors. Journal of Applied Physics, Vol. 105, no 7, 2009, pp 074512 – 074512-7. DOI 10.1063/1.3097396

  64. Wangtaphan S, Kasemsuwan V.: A high performance thermal noise-canceling transimpedance-based differential amplifier. IEEE Region 10 Conf. TENCON 2009, 2009, pp 1 – 4. DOI 10.1109/TENCON.2009.5396183

  65. Yuancheng Ji, Lan Nan, Mouthaan K.: Analysis of the drain thermal noise for deep submicron MOSFETs. Asia Pacific Microwave Conf. (APMC 2009), 2009, pp 1659 – 1662. DOI 10.1109/APMC.2009.5384327

  66. Yunpeng Pei, Ru Huang, Xia An, Jing Zhuge, Xiaodong Li, Han Xiao, Yangyuan Wang: Investigation of Thermal Noise in UTB GOI and SOI Devices. Trans. on ED, Vol. 55, no 5, 2008, pp 1203 – 1210. DOI 10.1109/TED.2008.919529

  67. Jaehong Lee, Jongwook Jeon, Junsoo Kim, Byung-Gook Park, Jong Duk Lee, Hyungcheol Shin: Prediction of channel thermal noise in twin silicon nanowire MOSFET (TSNWFET). 9th Int. Conf. on Solid-State and IC Technology, (ICSICT 2008), 2008, pp 61 – 63. DOI 10.1109/ICSICT.2008.4734463

  68. Kangwook Kim, Chang Won Jung: Thermal Noise Analysis on the Resistive Vee Dipole Antenna for Ground-Penetrating Radar Applications. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2008), Vol. 2, 2008, pp II-185 – II-188. DOI 10.1109/IGARSS.2008.4778958

  69. Foster S, Tikhomirov A, Milnes M.: Fundamental Thermal Noise in Distributed Feedback Fiber Lasers. IEEE Journal of Quantum Electronics, Vol. 43, no 5, 2007, pp 378 – 384. DOI 10.1109/JQE.2007.894744

  70. Zocchi F. E.: Generation-recombination and thermal noise coupling in the drift-diffusion model. Journal of Applied Physics, Vol. 102, no 10, 2007, pp 103712 – 103712-5. DOI 10.1063/1.2811847

  71. Forbes L, Mudrow M, Wanalertlak W.: Thermal noise and bit error rate limits in nanoscale memories. Electronics Letters, Vol. 42, no 5, 2006, pp 279 – 280. DOI 10.1049/el:20063803

  72. Mudrow M, Wanalertlak W, Forbes L.: Thermal noise limits in nanoscale electronics. IEEE Workshop on Microelectronics and Electron Devices (WMED '06), 2006, pp 2 – 40. DOI 10.1109/WMED.2006.1678299

  73. Kish L. B.: Thermal noise driven computing. Applied Physics Letters, Vol. 89, no 14, 2006, pp 144104 – 144104-3. DOI 10.1063/1.2359293

  74. Schreier R, Silva J, Steensgaard J, Temes G.C.: Design-oriented estimation of thermal noise in switched-capacitor circuits. Trans. on CAS I: Regular Papers, Vol. 52, no 11, 2005, pp 2358 – 2368. DOI 10.1109/TCSI.2005.853909

  75. Pao Cheng Chiu, Chao Cheng Lee: Transient analysis of thermal noise on switch cap circuit. IEEE Int. Symp. on VLSI Design, Automation and Test (VLSI-TSA-DAT), 2005, pp 132 – 135. DOI 10.1109/VDAT.2005.1500037

  76. Roy A.S, Enz C.C.: Compact modeling of thermal noise in the MOS transistor. Trans. on ED, Vol. 52, no 4, 2005, pp 611 – 614. DOI 10.1109/TED.2005.844735

  77. Kwangseok Han, Gil J, Seong-Sik Song, Jeonghu Han, Hyungcheol Shin, Choong-Ki Kim, Kwyro Lee: Complete high-frequency thermal noise modeling of short-channel MOSFETs and design of 5.2-GHz low noise amplifier. IEEE JSSC, Vol. 40, no 3, 2005, pp 726 – 735. DOI 10.1109/JSSC.2005.843637

  78. Jutzi W, Wuensch S, Mattes H, Schaefer F, Lochner O.: Thermal noise of microwave superconducting filter-amplifier combinations. IEEE Trans. on Applied Superconductivity, Vol. 15, no 2, 2005, pp 1012 – 1015. DOI 10.1109/TASC.2005.850185

  79. Jongwook Jeon, Seyoung Kim, In Man Kang, Kwangsuk Han, Kwyro Lee, Hyungcheol Shin: Analytical thermal noise model suitable for circuit design using short-channel MOSFETs. 2005 IEEE Radio Frequency IC (RFIC) Symp. Digest of Papers, 2005, pp 637 – 640. DOI 10.1109/RFIC.2005.1489894

  80. Porret A.-S, Enz C.C.: Non-quasi-static (NQS) thermal noise modelling of the MOS transistor. IEE Proc. - Circuits, Devices and Systems, Vol. 151, no 2, 2004, pp 155 – 166. DOI 10.1049/ip-cds:20040436

  81. Kwangseok Han, Hyungcheol Shin, Kwyro Lee: Analytical drain thermal noise current model valid for deep submicron MOSFETs. Trans. on ED, Vol. 51, no 2, 2004, pp 261 – 269. DOI 10.1109/TED.2003.821708

  82. Kwangseok Han, Kwyro Lee, Hyungcheol Shin: Thermal noise modeling for short-channel MOSFETs. Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD 2003), 2003, pp 79 – 82. DOI 10.1109/SISPAD.2003.1233642

  83. Acharya A, Hurst P.J, Lewis S.H.: Thermal noise from switches in a switched-capacitor gain stage. Southwest Symp. on Mixed-Signal Design, 2003, pp 121 – 126. DOI 10.1109/SSMSD.2003.1190410

  84. Uzunbajakau S, Rijpma A.P, Dolfsma J, Krooshoop H.J.G, ter Brake H.J.M, Peters M.J, Rogalla H.: Magnetic flux fluctuations due to eddy currents and thermal noise in metallic disks. IEEE Trans. on Magnetics, Vol. 39, no 4, 2003, pp 2018 – 2023. DOI 10.1109/TMAG.2003.812720

  85. Nakano H, Murakami H, Inoue T, Kato Y.: An experiment for verification of the auxiliary transmission-line method to evaluate a microwave thermal noise source. IEEE Trans. on Instrum. & Meas., Vol. 52, no 2, 2003, pp 306 – 310. DOI 10.1109/TIM.2003.810009

  86. Berkov D.V.: Fast switching of magnetic nanoparticles: simulation of thermal noise effects using the Langevin dynamics. IEEE Trans. on Magnetics, Vol. 38, no 5, 2002, pp 2489 – 2495. DOI 10.1109/TMAG.2002.801905

  87. Mallinson J.C.: Thermal noise in linear damped systems. IEEE Trans. on Magnetics, Vol. 38, no 5, 2002, pp 3540 – 3544. DOI 10.1109/TMAG.2002.802704

  88. I. A. Bilenko, V. B. Braginsky, N. Yu Markova: Thermal and excess noise in suspension fibres. Classical and Quantum Gravity, Vol. 19, 2002, pp 2035 – 2038. DOI 10.1088/0264-9381/19/7/410

  89. Nakano H, Murakami H, Inoue T, Kato Y.: An experiment for verification of auxiliary transmission line method to evaluate a microwave thermal noise source. Conf. on Precision Electromagnetic Measurements, 2002, pp 72 – 73. DOI 10.1109/CPEM.2002.1034725

  90. Bertram H.N, Safonov V.L.: Thermal noise, damping fundamentals and mode analysis: application to GMR sensors. 2002 IEEE Int. Magnetics Conf., (INTERMAG) Europe, 2002, pp EA6. DOI 10.1109/INTMAG.2002.1001114

  91. Vargas M, Pallas-Areny R.: Thermal noise in a finite bandwidth. IEEE Instrum. & Meas. Magazine, Vol. 4, no 4, 2001, pp 23 – 25. DOI 10.1109/5289.975462

  92. Jung-Suk Goo, Chang-Hoon Choi, Abramo A, Jae-Gyung Ahn, Zhiping Yu, Lee T.H, Dutton R.W.: Physical origin of the excess thermal noise in short channel MOSFETs. IEEE Electron Device Letters, Vol. 22, no 2, 2001, pp 101 – 103. DOI 10.1109/55.902845

  93. Knoblinger G, Klein P, Tiebout H.: A new model for thermal channel noise of deep-submicron MOSFETs and its application in RF-CMOS design. IEEE JSSC, Vol. 36, no 5, 2001, pp 831 – 837. DOI 10.1109/4.918922

  94. Zhang Guoyan, Liao Huailin, Huang Ru, Mansun Chan, Zhang Xing, Wang Yangyuan: A closed-form thermal noise model of SOI MOSFETs for low noise application. 2001 Int. Semiconductor Device Research Symp., 2001, pp 130 – 133. DOI 10.1109/ISDRS.2001.984456

  95. Chih-Hung Chen, Deen M.J, Matloubian M, Yuhua Cheng: Extraction of the induced gate noise, channel thermal noise and their correlation in sub-micron MOSFETs from RF noise measurements. Proc. of the 2001 Int. Conf. on Microelectronic Test Structures (ICMTS 2001), 2001, pp 131 – 135. DOI 10.1109/ICMTS.2001.928651

  96. Dong Y, Opal A.: Time-domain thermal noise simulation of switched capacitor circuits and delta-sigma modulators. IEEE Trans. on CAD of Integrated Circuits & Systems, Vol. 19, no 4, 2000, pp 473 – 481. DOI 10.1109/43.838996

  97. Chen Chih-Hung, Deen M. J.: Direct extraction of the channel thermal noise in metal-oxide-semiconductor field effect transistor from measurements of their rf noise parameters. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 18, no 2, 2000, pp 757 – 760. DOI 10.1116/1.582174

  98. Oliaei O.: Thermal noise analysis of multi-input SC-integrators for delta-sigma modulator design. Proc. of the 2000 IEEE Int. Symp. on Circuits and Systems (ISCAS 2000), Vol. 4, 2000, pp 425 – 428. DOI 10.1109/ISCAS.2000.858779

  99. Chih-Hung Chen, Deen M.J, Matloubian M, Yuhua Cheng: Extraction of the channel thermal noise in MOSFETs. Proc. of the 2000 Int. Conf. on Microelectronic Test Structures (ICMTS 2000), 2000, pp 42 – 47. DOI 10.1109/ICMTS.2000.844403

  100. Wei Jin, Chan P.C.H Jack Lau: A physical thermal noise model for SOI MOSFET. Trans. on ED, Vol. 47, no 4, 2000, pp 768 – 773. DOI 10.1109/16.830992

  101. Ou J.J, Xiaodong Jin, Chenming Hu, Gray P.R.: Submicron CMOS thermal noise modeling from an RF perspective. 1999 Symp. on VLSI Technology Digest of Technical Papers, 1999, pp 151-152 DOI 10.1109/VLSIT.1999.799388

  102. Klein P.: An analytical thermal noise model of deep submicron MOSFET's. IEEE Electron Device Letters, Vol. 20, no 8, 1999, pp 399 – 401. DOI 10.1109/55.778156

  103. Jeffery M, Xie P.Y, Whiteley S.R, Van Duzer T.: Monte Carlo and thermal noise analysis of ultra-high-speed high temperature superconductor digital circuits. IEEE Trans. on Applied Superconductivity, Vol. 9, no 2, 1999, pp 4095 – 4098. DOI 10.1109/77.783926

  104. Semenov V.K, Polyakov Yu.A, Wei Chao: Extraction of impacts of fabrication spread and thermal noise on operation of superconducting digital circuits. IEEE Trans. on Applied Superconductivity, Vol. 9, no 2, 1999, pp 4030 – 4033. DOI 10.1109/77.783912

  105. Bonaldi M., Falferi P., Cerdonio M., Vinante A., Dolesi R., Vitale S.: Thermal noise in a high Q cryogenic resonator. Review of Scientific Instruments, Vol. 70, no 3, 1999, pp 1851 – 1856. DOI 10.1063/1.1149679

  106. Triantis D.P, Birbas A.N.: Optimal current for minimum thermal noise operation of submicrometer MOS transistors. Trans. on ED, Vol. 44, no 11, 1997, pp 1990 – 1995. DOI 10.1109/16.641370

  107. Maraner A, Toninato F, Vitale S, Tiberto P.: Thermal 1/f noise in Cu90Co10: Effect of grain size. Journal of Applied Physics, Vol. 81, no 8, 1997, pp 3975 – 3977. DOI 10.1063/1.364911

  108. Dong Y, Opal A.: Efficient Monte-Carlo thermal noise simulation for ΣΔ modulators. Proc. of the IEEE Custom Integrated Circuits Conf., 1997, pp 499 – 502. DOI 10.1109/CICC.1997.606676

  109. Williams D.F.: Thermal noise in lossy waveguides. IEEE Trans on MTT , vol. 44, no. 7, 1996, pp. 1067 – 1073. DOI 10.1109/22.508639

  110. Abbott D., Davis R., Philips N., Eshraghian K.: Simple Derivation of the Thermal Noise Formula Using Window-Limited Fourier Transforms and Other Conundrums. IEEE Trans. on Educ., vol. 39, no. 1, Febr. 1996, pp 1 – 13. DOI 10.1109/13.485226

  111. Nenonen J., Montonen J., Katila T.: Thermal noise in biomagnetic measurements. Review of Scientific Instruments, Vol. 67, no 6, 1996, pp 2397 – 2405. DOI 10.1063/1.1147514

  112. Triantis D.P, Birbas A.N, Kondis D.: Thermal noise modeling for short-channel MOSFETs. Trans. on ED, Vol. 43, no 11, 1996, pp 1950 – 1955. DOI 10.1109/16.543032

  113. Mamontov Y.V, Willander M.: Accounting thermal noise in mathematical models of quasi-homogeneous regions in silicon devices. IEEE Trans. on CAD of Integrated Circuits & Systems, Vol. 14, no 7, 1995, pp 815 – 823. DOI 10.1109/43.391729

  114. Tedja S, Van der Spiegel J, Williams H.H.: Analytical and experimental studies of thermal noise in MOSFET's. Trans. on ED, Vol. 41, no 11, 1994, pp 2069 – 2075. DOI 10.1109/16.333824

  115. Wang B., Hellums J.R, Sodini C.G.: MOSFET thermal noise modeling for analog integrated circuits. IEEE JSSC, Vol. 29, no 7, 1994, pp 833 – 835. DOI 10.1109/4.303722

  116. Feder J.D, Klein M, Anderson C.J.: Thermal noise in digital Josephson devices. IEEE Trans. on Applied Superconductivity, Vol. 3, no 1, 1993, pp 2760 – 2764. DOI 10.1109/77.233509

  117. Goldminz L, Nemirovsky Y.: Thermal noise in buried-channel MOSFET. Trans. on ED, Vol. 39, no 10, 1992, pp 2325 – 2332. DOI 10.1109/16.158804

  118. Layman P.A, Chamberlain S.G.: A compact thermal noise model for the investigation of soft error rates in MOS VLSI digital circuits. IEEE JSSC, Vol. 24, no 1, 1989, pp 79 – 89. DOI 10.1109/4.16305

  119. Kato Y, Komiyama K, Yokoshima I.: A method for evaluating the noise temperature of microwave thermal noise sources by introducing an auxiliary transmission line. Trans. on MTT, Vol. 36, no 1, 1988, pp 145 – 147. DOI 10.1109/22.3494

  120. Kautz R. L.: Chaos and thermal noise in the rf‐biased Josephson junction. Journal of Applied Physics, Vol. 58, no 1, 1985, pp 424 – 440. DOI 10.1063/1.335642

  121. Gupta M.S.: Thermal noise in nonlinear resistive devices and its circuit representation. Proceedings of the IEEE, vol. 70, no. 8, 1982, pp. 788 – 804. DOI 10.1109/PROC.1982.12405

  122. Schrder D, Weinhausen G.: Calculation of thermal noise in j.f.e.t.s. IEE Journal on Solid-State and Electron Devices, Vol. 3, no 5, 1979, pp 137 – 141. DOI 10.1049/ij-ssed:19790029

  123. Bruncke W.C, van der Ziel A.: Thermal noise in junction-gate field-effect transistors. Trans. on ED, Vol. 13, no 3, 1966, pp 323 – 329. DOI 10.1109/T-ED.1966.15688

  124. Oliver B. M.: Thermal and Quantum Noise. Proc. of the IEEE, May 1965, pp 436 – 454. DOI 10.1109/PROC.1965.3814

  125. Van der Ziel A.: Thermal Noise in Field-Effect Transistors. Proc. of the IRE, Vol. 50, no 8, 1962, pp 1808 – 1812. DOI 10.1109/JRPROC.1962.288221

  126. Vanwormhoudt M., Haus H. A.: Thermal Noise in Linear, Lossy, Electromagnetic Media. J. of Applied Physics, Vol. 33, no 8, 1962, pp 2572 – 2577. DOI 10.1063/1.1729022

  127. Jacobsen B.B.: Thermal noise in multi-section radio links. Proc. of the IEE - Part C: Monographs, Vol. 105, no 7, 1958, pp 139 – 150. DOI 10.1049/pi-c.1958.0019

  128. Amakasu K.: Excess Thermal Noise Due to Current Flow Through (Ba Sr) Oxide Coating. Journal of Applied Physics, Vol. 23, no 12, 1952, pp 1330 – 1332. DOI 10.1063/1.1702069

Back to top list

Copyright 2010 © UNESCO - All Rights Reserved.