Home

Specificity of Bionoise

Glossary Bio
Acronyms Bio
Beware
Contact
 
 

                                                  NOISE in NEURAL NETWORKS

Even today a good many distinguished minds seem unable to accept or even to understand that from

a source of noise natural selection could quite unaided have drawn all the music of the biosphere

(Jacques Monod)

  1. Marino A.A., Kim P.Y., Frilot Clifton II: Trigeminal neurons detect cellphone radiation: Thermal or nonthermal is not the question. Electromagnetic Biology & Medicine, Vol. 36, no. 2, 2017, pp. 123 – 131. DOI 10.1080/15368378.2016.1194294

  2. Wondimu W. Teka, Ranjit Kumar Upadhyay, Argha Mondal: Fractional-order leaky integrate-and-fire model with long-term memory and power law dynamics. Neural Networks, Vol. 93, 2017, pp. 110 – 125. DOI 10.1016/j.neunet.2017.05.007

  3. Ranjit Kumar Upadhyay, Argha Mondal, Wondimu W. Teka: Fractional order excitable neural system with bidirectional coupling. Nonlinear Dynamics, Vol. 87, no. 4, 2017, pp. 2219 – 2233. https://doi.org/10.1007/s11071-016-3185-3

  4. Tang Jun, Zhang Juan, Ma Jun, et al.: Astrocyte calcium wave induces seizure-like behavior in neuron network. Science China-Technological Sciences, Vol. 60, no. 7, 2017, pp. 1011 – 1018. DOI 10.1007/s11431-016-0293-9

  5. Argha Mondal, Ranjit Kumar Upadhyay. Dynamics of a modified Hindmarsh-Rose neural model with random perturbations: Moment analysis and firing activities. Physica A, Vol. 486, 2017, pp. 144 – 160. https://doi.org/10.1016/j.physa.2017.05.086

  6. Guo Shengli, Tang Jun, Ma Jun, et al.: Autaptic Modulation of Electrical Activity in a Network of Neuron-Coupled Astrocyte. Complexity, Vol. 2017, 2017, Article # 4631602. https://doi.org/10.1155/2017/4631602

  7. Ranjit Kumar Upadhyay, Argha Mondal, Wondimu W. Teka: Mixed Mode Oscillations and Synchronous Activity in Noise Induced Modified Morris-Lecar Neural System. Int. Journal of Bifurcation and Chaos, Vol. 27, no. 5, 2017, Article # 1730019. https://doi.org/10.1142/S0218127417300191

  8. Wang Chunni, Guo Shengli, Xu Ying, et al.: Formation of Autapse Connected to Neuron and Its Biological Function. Complexity, Vol. 2017, 2017, Article # 5436737. https://doi.org/10.1155/2017/5436737

  9. Argha Mondal, Chinmoy Paul, Gajendra Kumar Vishwakarma, Ranjit Kumar Upadhyay: Parameter estimation in a spiking-bursting H-R neural model with random fluctuation. Differential Equations and Dynamical Systems, 2017, pp. 1 – 13. https://doi.org/10.1007/s12591-017-0355-9

  10. Wen-Ting Yu, Jun Tang, Jun Ma, Xianqing Yang: Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system. EPL (Europhysics Letters), Vol. 114, no. 5, 2016, Article # 50006. https://doi.org/10.1209/0295-5075/114/50006

  11. Ranjit Kumar Upadhyay, Argha Mondal, M.A. Aziz Alaoui: Synchronization analysis through coupling mechanism in realistic neural models. Applied Mathematical Modelling, Vol. 44, 2017, pp. 557 – 575. https://doi.org/10.1016/j.apm.2017.02.017

  12. Ranjit Kumar Upadhyay, Argha Mondal, Chinmoy Paul: A method for estimation of parameters in a neural model with noisy measurements. Nonlinear Dynamics, Vol. 85, no. 4, 2016, pp. 2521 – 2533. https://doi.org/10.1007/s11071-016-2842-x

  13. Baravalle R., Rosso O.A., Montani F.: A path integral approach to the Hodgkin-Huxley model. Physica A - Statistical Mechanics and its Applications, Vol. 486, 2017, pp. 986 – 999. DOI 10.1016/j.physa.2017.06.016

  14. Guo Xinmeng, Yu Haitao, Wang Jiang, et al.: Local excitation-inhibition ratio for synfire chain propagation in feed-forward neuronal networks. Physica A - Statistical Mechanics and its Applications, Vol. 482, 2017, pp. 308 – 316. DOI 10.1016/j.physa.2017.04.040

  15. Sun Sining, Zhang Binbin, Xie Lei, et al.: An unsupervised deep domain adaptation approach for robust speech recognition. Neurocomputing, Vol. 257, 2017, pp. 79 – 87. DOI 10.1016/j.neucom.2016.11.063

  16. Wang Jun, Tang Lingyu, Luo Yuyan, et al.: A weighted EMD-based prediction model based on TOPSIS and feed forward neural network for noised time series. Knowledge-Based Systems, Vol. 132, 2017, pp. 167 – 178. DOI 10.1016/j.knosys.2017.06.022

  17. Nigmatullin R.R., Maione G., Lino P., Saponaro F., Wei Zhang: The general theory of the Quasi-reproducible experiments: How to describe the measured data of complex systems? Communications in Nonlinear Science & Numerical Simulation, Vol. 42, 2017, pp. 324 – 341. https://doi.org/10.1016/j.cnsns.2016.05.019

  18. Yu Haitao, Galan R.F., Wang Jiang, et al.: Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin-Huxley neurons with ion-channel noise. Physica A - Statistical Mechanics and its Applications, Vol. 471, 2017, pp. 263 – 275. DOI 10.1016/j.physa.2016.12.039

  19. Doose J., Lindner B.: Evoking prescribed spike times in stochastic neurons. Physical Review E, Vol. 96, no. 3, 2017, Article # 032109. DOI 10.1103/PhysRevE.96.032109

  20. Ma Jun, Tang Jun: A review for dynamics in neuron and neuronal network. Nonlinear Dynamics, Vol. 89, no. 3, 2017, pp. 1569 – 1578. DOI 10.1007/s11071-017-3565-3

  21. Uzuntarla M., Barreto E., Torres J.J.: Inverse stochastic resonance in networks of spiking neurons. PLoS Computational Biology, Vol. 13, no. 7, 2017, Article # e1005646. DOI 10.1371/journal.pcbi.1005646

  22. Upadhyay Ranjit Kumar, Mondal Argha: Synchronization of bursting neurons with a slowly varying DC current. Chaos Solitons & Fractals, Vol. 99, 2017, pp. 195 – 208. DOI 10.1016/j.chaos.2017.03.063

  23. Hancock R., Pugh K.R., Hoeft Fumiko: Neural Noise Hypothesis of Developmental Dyslexia. Trends in Cognitive Sciences, Vol. 21, no. 6, 2017, pp. 434 – 448. DOI 10.1016/j.tics.2017.03.008

  24. Olmi S., Angulo-Garcia D., Imparato A., et al.: Exact firing time statistics of neurons driven by discrete inhibitory noise. Scientific Reports, Vol. 7, 2017, Article # 1577. DOI 10.1038/s41598-017-01658-8

  25. Orlandi J.G., Casademunt J.: Noise focusing in neuronal tissues: Symmetry breaking and localization in excitable networks with quenched disorder. Physical Review E, Vol. 95, no. 5, 2017, Article # 052304. DOI 10.1103/PhysRevE.95.052304

  26. Liu Ren, Chen Renjie, Elthakeb A.T., et al.: High Density Individually Addressable Nanowire Arrays Record Intracellular Activity from Primary Rodent and Human Stem Cell Derived Neurons. Nano Letters, Vol. 17, no. 5, 2017, pp. 2757 – 2764. DOI 10.1021/acs.nanolett.6b04752

  27. Zhang Liyue, Motter A.E., Nishikawa Takashi: Incoherence-Mediated Remote Synchronization. Physical Review Lett., Vol. 118, no. 17, 2017, Article # 174102. DOI 10.1103/PhysRevLett.118.174102

  28. Chehelcheraghi M., van Leeuwen C., Steur E., et al.: A neural mass model of cross frequency coupling. PLoS One, Vol. 12, no. 4, 2017, Article # e0173776. DOI 10.1371/journal.pone.0173776

  29. Kanders K., Lorimer T., Stoop R.: Avalanche and edge-of-chaos criticality do not necessarily co-occur in neural networks. Chaos, Vol. 27, no. 4, 2017, Article # 047408. DOI 10.1063/1.4978998

  30. Lombardi F., Herrmann H.J., de Arcangelis L.: Balance of excitation and inhibition determines 1/f power spectrum in neuronal networks. Chaos, Vol. 27, no. 4, 2017, Article # 047402. DOI 10.1063/1.4979043

  31. Fertonani A., Miniussi C.: Transcranial Electrical Stimulation: What We Know and Do Not Know About Mechanisms. Neuroscientist, Vol. 23, no. 2, 2017, pp. 109 – 123. DOI 10.1177/1073858416631966

  32. Xu Ying, Ying Heping, Jia Ya, et al.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Scientific Reports, Vol. 7, 2017, Article # 43452. DOI 10.1038/srep43452

  33. Wang Ya, Ma Jun, Xu Ying, et al.: The Electrical Activity of Neurons Subject to Electromagnetic Induction and Gaussian White Noise. Int. J. of Bifurcation & Chaos, Vol. 27, no. 2, 2017, Article # 1750030. DOI 10.1142/S0218127417500304

  34. Hong Nari, Joo Sunghoon, Nam Yoonkey: Characterization of Axonal Spikes in Cultured Neuronal Networks Using Microelectrode Arrays and Microchannel Devices. IEEE Trans on Biomedical Eng., Vol. 64, no. 2, 2017, pp. 492 – 498. DOI 10.1109/TBME.2016.2567424

  35. Zhao Jia, Deng Bin, Qin Yingmei, et al.: Weak electric fields detectability in a noisy neural network. Cognitive Neurodynamics, Vol. 11, no. 1, 2017, pp. 81 – 90. DOI 10.1007/s11571-016-9409-x

  36. Martens M.B., Houweling A.R., Tiesinga P.H.E.: Anti-correlations in the degree distribution increase stimulus detection performance in noisy spiking neural networks. Journal of Computational Neuroscience, Vol. 42, no. 1, 2017, pp. 87 – 106. DOI 10.1007/s10827-016-0629-1

  37. Yuniati Anis, Mai Te-Lun, Chen Chi-Ming: Synchronization and Inter-Layer Interactions of Noise-Driven Neural Networks. Frontiers in Computational Neuroscience, Vol. 11, 2017, Article # 2. DOI 10.3389/fncom.2017.00002

  38. Deniz Taskin, Rotter Stefan: Solving the two-dimensional Fokker-Planck equation for strongly correlated neurons. Physical Review E, Vol. 95, no. 1, 2017, Article # 012412. DOI 10.1103/PhysRevE.95.012412

  39. Yao Yuangen, Deng Haiyou, Ma Chengzhang, et al.: Impact of Bounded Noise and Rewiring on the Formation and Instability of Spiral Waves in a Small-World Network of Hodgkin-Huxley Neurons. PLoS One, Vol. 12, no. 1, 2017, Article # e0171273. DOI 10.1371/journal.pone.0171273

  40. Ma Jun, Wu Fuqiang, Wang Chunni: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. of Modern Physics B, Vol. 31, no. 2, 2017, Article # 1650251. DOI 10.1142/S0217979216502519

  41. Uzun Rukiye, Ozer Mahmut: Effects of Autapse and Channel Blockage on Firing Regularity in a Biological Neuronal Network. Istanbul University - J. of Electrical and Electronics Eng., Vol. 17, no. 1, Special Issue: SI, 2017, pp. 3068 – 3072.

  42. Lobov S.A., Zhuravlev M.O., Makarov V.A., et al.: Noise Enhanced Signaling in STDP Driven Spiking-Neuron Network. Mathematical Modelling of Natural Phenomena, Vol. 12, no. 4, 2017, pp. 109 – 124. DOI 10.1051/mmnp/201712409

  43. Yu Haitao, Dhingra R.R., Dick T.E., et al.: Effects of ion channel noise on neural circuits: an application to the respiratory pattern generator to investigate breathing variability. Journal of Neurophysiology, Vol. 117, no. 1, 2017, pp. 230 – 242. DOI 10.1152/jn.00416.2016

  44. Yu Haitao, Guo Xinmeng, Wang Jiang: Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay. Communications in Nonlinear Science & Numerical Simulation, Vol. 42, 2017, pp. 532 – 544. DOI 10.1016/j.cnsns.2016.06.021

  45. Xie Huijuan, Gong Yubing: Multiple coherence resonances and synchronization transitions by time delay in adaptive scale-free neuronal networks with spike-timing-dependent plasticity. Chaos Solitons & Fractals, Vol. 94, 2017, pp. 80 – 85. DOI 10.1016/j.chaos.2016.11.014

  46. Rosenbaum R., Smith M.A., Kohn A., et al.: The spatial structure of correlated neuronal variability. Nature Neuroscience, Vol. 20, no. 1, 2017, pp. 107 – 114. DOI 10.1038/nn.4433

  47. Xie Huijuan, Gong Yubing, Wang Qi: Effect of Spike-Timing-Dependent Plasticity on Intrinsic Coherence Resonance in Newman-Watts Stochastic Hodgkin-Huxley Neuronal Networks. Fluct. & Noise Lett., Vol. 15, no. 4, 2016, Article # 1650027. DOI 10.1142/S0219477516500279

  48. Franovic I., Klinshov V.: Slow rate fluctuations in a network of noisy neurons with coupling delay. EPL, Vol. 116, no. 4, 2016, Article # 48002. DOI 10.1209/0295-5075/116/48002

  49. Ma Jun, Xu Ying, Wang Chunni, Jin Wuyin: Pattern selection and self-organization induced by random boundary initial values in a neuronal network. Physica A - Statistical Mechanics and its Applications, Vol. 461, 2016, pp. 586 – 594. DOI 10.1016/j.physa.2016.06.075

  50. Doose J., Doron G., Brecht M., Lindner B.: Noisy Juxtacellular Stimulation In Vivo Leads to Reliable Spiking and Reveals High-Frequency Coding in Single Neurons. Journal of Neuroscience, Vol. 36, no. 43, 2016, pp. 11120 – 11132. DOI 10.1523/JNEUROSCI.0787-16.2016

  51. Dumont G., Henry J., Tarniceriu C.O.: Theoretical connections between mathematical neuronal models corresponding to different expressions of noise. Journal of Theoretical Biology, Vol. 406, 2016, pp. 31 – 41. DOI 10.1016/j.jtbi.2016.06.022

  52. Mitra Anish, Raichle Marcus E.: How networks communicate: propagation patterns in spontaneous brain activity. Philosophical Trans. of the Royal Society B - Biological Sciences, Vol. 371, no. 1705, 2016, Article # 20150546. DOI 10.1098/rstb.2015.0546

  53. Wang Baoying, Gong Yubing, Xie Huijuan, Wang Qi: Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman-Watts neuronal networks. Chaos Solitons & Fractals, Vol. 91, 2016, pp. 372 – 378. DOI 10.1016/j.chaos.2016.06.020

  54. Xu Ying, Wang Chunni, Lv Mi, Tang Jun: Local pacing, noise induced ordered wave in a 2D lattice of neurons. Neurocomputing, Vol. 207, 2016, pp. 398 – 407. https://doi.org/10.1016/j.neucom.2016.05.030

  55. Sancristobal B., Rebollo B., Boada Pol, et al.: Collective stochastic coherence in recurrent neuronal networks. Nature Physics, Vol. 12, no. 9, 2016, pp. 881 – 887. DOI 10.1038/NPHYS3739

  56. Kruscha Alexandra, Lindner Benjamin: Partial synchronous output of a neuronal population under weak common noise: Analytical approaches to the correlation statistics. Physical Review E, Vol. 94, no. 2, 2016, Article # 022422. DOI 10.1103/PhysRevE.94.022422

  57. De-La-RosaTovar A., Mishra Prashant K., De-Miguel F.F.: On the Basis of Synaptic Integration Constancy during Growth of a Neuronal Circuit. Frontiers in Cellular Neuroscience, Vol. 10, 2016, Article # 198. DOI 10.3389/fncel.2016.00198

  58. Semenova N., Zakharova A., Anishchenko V., Schoell E.: Coherence-Resonance Chimeras in a Network of Excitable Elements. Physical Review Lett., Vol. 117, no. 1, 2016, Article # 014102. DOI 10.1103/PhysRevLett.117.014102

  59. Sun Xiao-Juan, Li Guo-Fang: Stochastic multi-resonance induced by partial time delay in a Watts-Strogatz small-world neuronal network. Acta Physica Sinica, Vol. 65, no. 12, 2016, Article # 120502. DOI 10.7498/aps.65.120502

  60. Wang Qi, Gong Yubing: Effect of Autaptic Activity on Intrinsic Coherence Resonance in Newman-Watts Networks of Stochastic Hodgkin-Huxley Neurons. Fluct. & Noise Lett., Vol. 15, no. 2, 2016, Article # 1650016. DOI 10.1142/S0219477516500164

  61. Okada Mami, Ishikawa Tomoe, Ikegaya Yuji: A Computationally Efficient Filter for Reducing Shot Noise in Low S/N Data. PLoS One, Vol. 11, no. 6, 2016, Article # e0157595. DOI 10.1371/journal.pone.0157595

  62. Patel Mainak: A Simplified model of mutually inhibitory sleep-active and wake-active neuronal populations employing a noise-based switching mechanism. Journal of Theoretical Biology, Vol. 394, 2016, pp. 127 – 136. DOI 10.1016/j.jtbi.2016.01.013

  63. Shaukat Aleena, Thivierge Jean-Philippe: Statistical Evaluation of Waveform Collapse Reveals Scale-Free Properties of Neuronal Avalanches. Frontiers in Computational Neuroscience, Vol. 10, 2016, Article # 29. DOI 10.3389/fncom.2016.00029

  64. Thul R., Coombe S., Laing C.R.: Neural Field Models with Threshold Noise. Journal of Mathematical Neuroscience, Vol. 6, 2016, Article # UNSP 3. DOI 10.1186/s13408-016-0035-z

  65. Yilmaz E., Baysal V., Perc M., et al.: Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network. Science China - Technological Sciences, Vol. 59, no. 3, 2016, pp. 364 – 370. DOI 10.1007/s11431-015-5984-z

  66. Yilmaz E., Ozer M., Baysal V., Perc M.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Scientific Reports, Vol. 6, 2016, Article # 30914. DOI 10.1038/srep30914

  67. Yilmaz E., Baysal V., Ozer M., et al.: Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks. Physica A - Statistical Mechanics and its Applications, Vol. 444, 2016, pp. 538 – 546. DOI 10.1016/j.physa.2015.10.054

  68. Tang Jun, Liu Tong-Bo, Ma Jun, et al.: Effect of calcium channel noise in astrocytes on neuronal transmission. Communications in Nonlinear Science & Numerical Simulation, Vol. 32, 2016, pp. 262 – 272. DOI 10.1016/j.cnsns.2015.08.019

  69. Chen YueLing, Yu LianChun, Chen Yong: Reliability of weak signals detection in neurons with noise. Science China - Technological Sciences, Vol. 59, no. 3, 2016, pp. 411 – 417. DOI 10.1007/s11431-015-6000-3

  70. Anis Yuniati, Te-Lun Mai, Chi-Ming Chen: Noise-Driven Synchronization of Coupled Neural Networks. Biophysical Journal, Vol. 110, no. 3, Supplement 1, 2016, pp. 631a – 632a. http://dx.doi.org/10.1016/j.bpj.2015.11.3382

  71. Hong Dawei, Man Shushuang, Martin J.V.: A stochastic mechanism for signal propagation in the brain: Force of rapid random fluctuations in membrane potentials of individual neurons. Journal of Theoretical Biology, Vol. 389, 2016, pp. 225 – 236. DOI 10.1016/j.jtbi.2015.10.035

  72. Zylberberg J., Cafaro J., Turner M.H., et al.: Direction-Selective Circuits Shape Noise to Ensure a Precise Population Code. Neuron, Vol. 89, no. 2, 2016, pp. 369 – 383. https://doi.org/10.1016/j.neuron.2015.11.019

  73. Inglis J., MacLaurin J.: A General Framework for Stochastic Traveling Waves and Patterns, with Application to Neural Field Equations. SIAM Journal on Applied Dynamical Systems, Vol. 15, no. 1, 2016, pp. 195 – 234. DOI 10.1137/15M102856X

  74. Nobukawa Sou, Nishimura Haruhiko: Enhancement of Spike-Timing-Dependent Plasticity in Spiking Neural Systems with Noise. Int. Journal of Neural Systems, Vol. 26, no. 5, 2016, Article # 1550040. DOI 10.1142/S0129065715500409

  75. Nobukawa S., Nishimura H., Yamanishi T.: Chaotic States Caused by Discontinuous Resetting Process in Spiking Neuron Model. Proc. of the Int. Joint Conference on Neural Networks (IJCNN), # 17009, 2016, pp.315 – 319.

    https://doi.org/10.1016/j.apm.2016.03.003

  76. Favela L.H., Coey C.A., Griff E.R., et al.: Fractal analysis reveals subclasses of neurons and suggests an explanation of their spontaneous activity. Neuroscience Lett., Vol. 626, 2016, pp. 54 – 58. DOI 10.1016/j.neulet.2016.05.017

  77. Wang Qi, Gong Yubing: Multiple coherence resonance and synchronization transitions induced by autaptic delay in Newman-Watts neuron networks. Applied Mathematical Modelling, Vol. 40, no. 15-16, 2016, pp. 7147 – 7155. https://doi.org/10.1016/j.apm.2016.03.003

  78. Alegre-Cortes J., Soto-Sanchez C., Piza A.G., et al.: Time-frequency analysis of neuronal populations with instantaneous resolution based on noise-assisted multivariate empirical mode decomposition. Journal of Neuroscience Methods, Vol. 267, 2016, pp. 35 – 44. DOI 10.1016/j.jneumeth.2016.03.018

  79. Zhe Sun, Micheletto R.: Noise influence on spike activation in a Hindmarsh-Rose small-world neural network. Journal of Physics A - Mathematical and Theoretical, Vol. 49, no. 28, 2016, Article # 285601. DOI 10.1088/1751-8113/49/28/285601

  80. Song Bo, Zhang Ya, Shu Zhan, Hu Fu-Nian: Stability analysis of Hopfield neural networks perturbed by Poisson noises. Neurocomputing, Vol. 196, 2016, pp. 53 – 58. DOI 10.1016/j.neucom.2016.02.034

  81. Eckert M.A., Teubner-Rhodes S., Vaden K.I., Jr.: Is Listening in Noise Worth It? The Neurobiology of Speech Recognition in Challenging Listening Conditions. Ear and Hearing, Vol. 37, Supplement: 1, 2016, pp. 101S – 110S. DOI 10.1097/AUD.0000000000000300

  82. Wang Hengtong, Chen Yong: Spatiotemporal activities of neural network exposed to external electric fields. Nonlinear Dynamics, Vol. 85, no. 2, 2016, pp. 881 – 891. DOI 10.1007/s11071-016-2730-4

  83. Kim Sang-Yoon, Lim Woochang: Effect of network architecture on burst and spike synchronization in a scale-free network of bursting neurons. Neural Networks, Vol. 79, 2016, pp. 53 – 77. DOI 10.1016/j.neunet.2016.03.008

  84. Hwang Inyoung, Park Hyung-Min, Chang Joon-Hyuk: Ensemble of deep neural networks using acoustic environment classification for statistical model-based voice activity detection. Computer Speech and Language, Vol. 38, 2016, pp. 1 – 12. DOI 10.1016/j.csl.2015.11.003

  85. Pikovsky A.: Reconstruction of a neural network from a time series of firing rates. Physical Review E, Vol. 93, no. 6, 2016, Article # 062313. DOI 10.1103/PhysRevE.93.062313

  86. Uezu Tatsuya, Kiyokawa Shuji: Supervised Learning of Two-Layer Perceptron under the Existence of External Noise - Learning Curve of Boolean Functions of Two Variables in Tree-Like Architecture. Journal of the Physical Society of Japan, Vol. 85, no. 6, 2016, Article # 064001. DOI 10.7566/JPSJ.85.064001

  87. Ward L.M., Greenwood P.E.: Stochastic facilitation in the brain? Journal of Statistical Mechanics - Theory and Experiment, 2016, Article # 054033. DOI 10.1088/1742-5468/2016/05/054033

  88. Xu Xuying, Ni Li, Wang Rubin: A neural network model of spontaneous up and down transitions. Nonlinear Dynamics, Vol. 84, no. 3, 2016, pp. 1541 – 1551. DOI 10.1007/s11071-015-2587-y

  89. McDonnell M.D., Goldwyn J.H., Lindner B.: Editorial: Neuronal Stochastic Variability: Influences on Spiking Dynamics and Network Activity. Frontiers in Computational Neuroscience, Vol. 10, 2016, Article # 38. DOI 10.3389/fncom.2016.00038

  90. Schneidman E.: Towards the design principles of neural population codes. Current Opinion in Neurobiology, Vol. 37, 2016, pp. 133 – 140. DOI 10.1016/j.conb.2016.03.001

  91. Zhu Song, Yang Qiqi, Shen Yi: Noise further expresses exponential decay for globally exponentially stable time-varying delayed neural networks. Neural Networks, Vol. 77, 2016, pp. 7 – 13. DOI 10.1016/j.neunet.2016.01.012

  92. Plotnikov S.A., Lehnert J., Fradkov A.L., et al.: Adaptive Control of Synchronization in Delay-Coupled Heterogeneous Networks of FitzHugh-Nagumo Nodes. Int. J. of Bifurcation & Chaos, Vol. 26, no. 4, 2016, Article # 1650058. DOI 10.1142/S0218127416500589

  93. d'Acremont M., Bossaerts P.: Neural Mechanisms Behind Identification of Leptokurtic Noise and Adaptive Behavioral Response. Cerebral Cortex, Vol. 26, no. 4, 2016, pp. 1818 – 1830. DOI 10.1093/cercor/bhw013

  94. Jonke Z., Habenschuss S., Maass W.: Solving Constraint Satisfaction Problems with Networks of Spiking Neurons. Frontiers in Neuroscience, Vol. 10, 2016, Article # 118. DOI 10.3389/fnins.2016.00118

  95. Yu Yajing, Dong Hongli, Wang Zidong, et al.: Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties. Neurocomputing, Vol. 182, 2016, pp. 18 – 24. DOI 10.1016/j.neucom.2015.11.079

  96. Sanders T.H.: Phase-amplitude coupling, an indication of bursting in parkinsonism, is masked by periodic pulses. Journal of Neurophysiology, Vol. 115, no. 3, 2016, pp. 1587 – 1595. DOI 10.1152/jn.00801.2015

  97. Canals V., Morro A., Oliver A., et al.: A New Stochastic Computing Methodology for Efficient Neural Network Implementation. IEEE Trans on Neural Networks and Learning Systems, Vol. 27, no. 3, 2016, pp. 551 – 564. DOI 10.1109/TNNLS.2015.2413754

  98. Doiron B., Litwin-Kumar A., Rosenbaum R., et al.: The mechanics of state-dependent neural correlations. Nature Neuroscience, Vol. 19, no. 3, 2016, pp. 383 – 393. DOI 10.1038/nn.4242

  99. Meruelo Alicia Costalago, Simpson D.M., Veres S.M., et al.: Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron. Neural Networks, Vol. 75, 2016, pp. 56 – 65. DOI 10.1016/j.neunet.2015.12.002

  100. Banu L. Jarina, Balasubramaniam P.: Robust stability analysis for discrete-time neural networks with time-varying leakage delays and random parameter uncertainties. Neurocomputing, Vol. 179, 2016, pp. 126 – 134. DOI 10.1016/j.neucom.2015.11.069

  101. Albers C., Westkott M., Pawelzik K.: Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity. PLoS One, Vol. 11, no. 2, 2016, Article # e0148948. DOI 10.1371/journal.pone.0148948

  102. Mendenhall J., Meiler J.: Improving quantitative structure-activity relationship models using Artificial Neural Networks trained with dropout. Journal of Computer-aided Molecular Design, Vol. 30, no. 2, 2016, pp. 177 – 189. DOI 10.1007/s10822-016-9895-2

  103. Molina V., Bachiller A., Suazo V., et al.: Noise power associated with decreased task-induced variability of brain electrical activity in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, Vol. 266, no. 1, 2016, pp. 55 – 61. DOI 10.1007/s00406-014-0569-6

  104. Bharmauria Vishal, Bachatene L., Cattan S., et al.: High noise correlation between the functionally connected neurons in emergent V1 microcircuits. Experimental Brain Research, Vol. 234, no. 2, 2016, pp. 523 – 532. DOI 10.1007/s00221-015-4482-7

  105. Zhou Liuwei, Wang Zhijie, Zhou Jun, et al.: Mean square synchronization of neural networks with Levy noise via sampled-data and actuator saturating controller. Neurocomputing, Vol. 173, 2016, pp. 1235 – 1244. DOI 10.1016/j.neucom.2015.08.081

  106. Connelly W.M., Laing M., Errington A.C., et al.: The Thalamus as a Low Pass Filter. Filtering at the Cellular Level does Not Equate with Filtering at the Network Level. Frontiers in Neural Circuits, Vol. 9, 2016, Article # 89. DOI 10.3389/fncir.2015.00089

  107. Lowet E., Roberts M.J., Bonizzi P., et al.: Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches. PLoS One, Vol. 11, no. 1, 2016, Article # e0146443. DOI 10.1371/journal.pone.0146443

  108. Duc K.D., Schuss Z., Holcman D.: Oscillatory Survival Probability: Analytical and Numerical Study of a Non-Poissonian Exit Time. Multiscale Modeling & Simulation, Vol. 14, no. 2, 2016, pp. 772 – 798. DOI 10.1137/151004100

  109. Singh P., Kadalbajoo M.K., Sharma K.: Probability Density Function of Leaky Integrate-and-Fire Model with Levy Noise and Its Numerical Approximation. Numerical Analysis and Applications, Vol. 9, no. 1, 2016, pp. 66 – 73. DOI 10.1134/S1995423916010079

  110. Nobukawa Sou, Nishimura Haruhiko, Yamanishi Teruya, Liu Jian-Qin: Analysis of Chaotic Resonance in Izhikevich Neuron Model. PLoS One, Vol. 10, no. 9, 2015, page e0138919. DOI 10.1371/journal.pone.0138919

  111. Uzuntarla M., Ozer M., Ileri U., et al.: Effects of dynamic synapses on noise-delayed response latency of a single neuron. Physical Review E, Vol. 92, no. 6, 2015, Article # 062710. DOI 10.1103/PhysRevE.92.062710

  112. Kanitscheider I., Coen-Cagli R., Pouget A.: Origin of information-limiting noise correlations. Proc. of the National Acad. of Sciences of the USA, Vol. 112, no. 50, 2015, pp. E6973 – E6982. DOI 10.1073/pnas.1508738112

  113. Klinshov V., Franovic I.: Mean-field dynamics of a random neural network with noise. Physical Review E, Vol. 92, no. 6, 2015, Article # 062813. DOI 10.1103/PhysRevE.92.062813

  114. Ma Jun, Tang Jun: A review for dynamics of collective behaviors of network of neurons. Science China - Technological Sciences, Vol. 58, no. 12, 2015, pp. 2038 – 2045. DOI 10.1007/s11431-015-5961-6

  115. Gardner B., Sporea I., Gruening A.: Learning Spatiotemporally Encoded Pattern Transformations in Structured Spiking Neural Networks. Neural Computation, Vol. 27, no. 12, 2015, pp. 2548 – 2586. DOI 10.1162/NECO_a_00790

  116. Zhang Lixian, Zhu Yanzheng, Shi Peng, et al.: Resilient Asynchronous H-infinity Filtering for Markov Jump Neural Networks With Unideal Measurements and Multiplicative Noises. IEEE Transactions on Cybernetics, Vol. 45, no. 12, 2015, pp. 2840 – 2852. DOI 10.1109/TCYB.2014.2387203

  117. Moreno-Bote R., Drugowitsch J.: Causal Inference and Explaining Away in a Spiking Network. Scientific Reports, Vol. 5, 2015, Article # 17531. DOI 10.1038/srep17531

  118. Li Na, Yang Xiao-Li: Synchronous dynamics of small-world neuronal network system with spatially correlated white noise. Acta Physica Sinica, Vol. 64, no. 22, 2015, Article # 220503. DOI 10.7498/aps.64.220503

  119. Kobayashi Takaaki, Shibuya Takeshi, Morita Masahiko: Q-Learning in Continuous State-Action Space with Noisy and Redundant Inputs by Using a Selective Desensitization Neural Network. Journal of Advanced Computational Intelligence & Intelligent Informatics, Vol. 19, no. 6, 2015, pp. 825 – 832.

  120. Wang Bao-Ying, Gong Yu-Bing: Effects of channel noise on synchronization transitions in delayed scale-free network of stochastic Hodgkin-Huxley neurons. Chinese Physics B, Vol. 24, no. 11, 2015, Article # 118702. DOI 10.1088/1674-1056/24/11/118702

  121. Maesani A., Ramdya P., Cruchet S., et al.: Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns. PLoS Computational Biology, Vol. 11, no. 11, 2015, Article # e1004577. DOI 10.1371/journal.pcbi.1004577

  122. Li Feng, Shen Hao: Finite-time H-infinity synchronization control for semi-Markov jump delayed neural networks with randomly occurring uncertainties. Neurocomputing, Vol. 166, 2015, pp. 447 – 454. DOI 10.1016/j.neucom.2015.03.034

  123. Kim June Hoan, Lee Ho Jun, Min Cheol Hong, et al.: Coherence resonance in bursting neural networks. Physical Review E, Vol. 92, no. 4, 2015, Article # 042701. DOI 10.1103/PhysRevE.92.042701

  124. Lagzi F., Rotter S.: Dynamics of Competition between Subnetworks of Spiking Neuronal Networks in the Balanced State. PLoS One, Vol. 10, no. 9, 2015, Article # e0138947. DOI 10.1371/journal.pone.0138947

  125. Ganmor E., Segev R., Schneidman E.: A thesaurus for a neural population code. ELIFE, Vol. 4, 2015, Article # e06134. DOI 10.7554/eLife.06134

  126. Zhang Chunmei, Li Wenxue, Wang Ke: Graph Theory-Based Approach for Stability Analysis of Stochastic Coupled Systems With Levy Noise on Networks. IEEE Trans on Neural Networks and Learning Systems, Vol. 26, no. 8, 2015, pp. 1698 – 1709. DOI 10.1109/TNNLS.2014.2352217

  127. Schwalger T., Droste F., Lindner B.: Statistical structure of neural spiking under non-Poissonian or other non-white stimulation. Journal of Computational Neuroscience, Vol. 39, no. 1, 2015, pp. 29 – 51. DOI 10.1007/s10827-015-0560-x

  128. Faugeras O., Inglis J.: Stochastic neural field equations: a rigorous footing. Journal of Mathematical Biology, Vol. 71, no. 2, 2015, pp. 259 – 300. DOI 10.1007/s00285-014-0807-6

  129. Payeur A., Maler L., Longtin A.: Oscillatorylike behavior in feedforward neuronal networks. Physical Review E, Vol. 92, no. 1, 2015, Article # 012703. DOI 10.1103/PhysRevE.92.012703

  130. Zhou Xianghui, Zhou Wuneng, Yang Jun, et al.: A novel scheme for synchronization control of stochastic neural networks with multiple time-varying delays. Neurocomputing, Vol. 159, 2015, pp. 50 – 57. DOI 10.1016/j.neucom.2015.02.031

  131. Agliari E., Barra A., Galluzzi A., et al.: Topological properties of hierarchical networks. Physical Review E, Vol. 91, no. 6, 2015, Article # 062807. DOI 10.1103/PhysRevE.91.062807

  132. Bujan A.F., Aertsen Ad, Kumar A.: Role of Input Correlations in Shaping the Variability and Noise Correlations of Evoked Activity in the Neocortex. Journal of Neuroscience, Vol. 35, no. 22, 2015, pp. 8611 – 8625. DOI 10.1523/JNEUROSCI.4536-14.2015

  133. Bose S.K., Lawrence C.P., Liu Z., et al.: Evolution of a designless nanoparticle network into reconfigurable Boolean logic. Nature Neuroscience, Vol. 10, no. 12, 2015, pp. 1048 – 1052. DOI 10.1038/NNANO.2015.207

  134. Ren Guodong, Tang Jun, Ma Jun, et al.: Detection of noise effect on coupled neuronal circuits. Communications in Nonlinear Science and Numerical Simulation, Vol. 29, no. 1-3, 2015, pp. 170 – 178. DOI 10.1016/j.cnsns.2015.05.001

  135. Peyre E., Silva C.G., Nguyen L.: Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex. Frontiers in Cellular Neuroscience, Vol. 9, 2015, Article # 129. DOI 10.3389/fncel.2015.00129

  136. Pan Y., Sun T., Yu H.: Peaking-Free Output-Feedback Adaptive Neural Control Under a Nonseparation Principle. IEEE Trans on Neural Networks and Learning Systems, Vol. 26, no. 12, 2015, pp. 3097 – 3108. DOI 10.1109/TNNLS.2015.2403712

  137. Afshar S., George L., Thakur C.S., Tapson J., van Schaik A., de Chazal P., Hamilton T.J.: Turn Down That Noise: Synaptic Encoding of Afferent SNR in a Single Spiking Neuron. IEEE Trans. on Biomedical Circuits and Systems, Vol.9, no.2, 2015, pp.188 – 196. DOI 10.1109/TBCAS.2015.2416391

  138. Vidybida Alexander: Relation Between Firing Statistics of Spiking Neuron with Instantaneous Feedback and Without Feedback. Fluct. Noise Lett., Vol. 14, no. 04, 2015, 7 pages, Article # 1550034. DOI 10.1142/S0219477515500340

  139. Basura G.J., Koehler S.D., Shore S.E.: Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus. Journal of Neurophysiology, Vol. 114, no. 6, 2015, pp. 3064 – 3075. DOI 10.1152/jn.00319.2015

  140. Jia Yanbing, Gu Huaguang: Transition from double coherence resonances to single coherence resonance in a neuronal network with phase noise. Chaos, Vol. 25, no. 12, 2015, Article # 123124. DOI 10.1063/1.4938733

  141. Yu Haitao, Guo Xinmeng, Wang Jiang, et al.: Adaptive stochastic resonance in self-organized small-world neuronal networks with time delay. Communications in Nonlinear Science & Numerical Simulation, Vol. 29, no. 1-3, 2015, pp. 346 – 358. DOI 10.1016/j.cnsns.2015.05.017

  142. Moosavi S. Amin, Montakhab Afshin: Structural versus dynamical origins of mean-field behavior in a self-organized critical model of neuronal avalanches. Physical Review E, Vol. 92, no. 5, 2015, Article # 052804. DOI 10.1103/PhysRevE.92.052804

  143. Wang Qi, Gong Yubing, Wu Yanan: Synchronization transitions induced by the fluctuation of adaptive coupling strength in delayed Newman-Watts neuronal networks. Biosystems, Vol. 137, 2015, pp. 20 – 25. DOI 10.1016/j.biosystems.2015.09.005

  144. Zhang Xuejuan, Li Hui, Chen Jianchun, et al.: The impact of channel and external synaptic noises on spatial and temporal coherence in neuronal networks. Neurocomputing, Vol. 164, 2015, pp. 230 – 239. DOI 10.1016/j.neucom.2015.02.066

  145. Wang Qi, Gong Yubing, Li Hongying: Effects of channel noise on synchronization transitions in Newman-Watts neuronal network with time delays. Nonlinear Dynamics, Vol. 81, no. 4, 2015, pp. 1689 – 1697. DOI 10.1007/s11071-015-2099-9

  146. Bays Paul M.: Spikes not slots: noise neural populations limits working memory. Trends in Cognitive Sciences, Vol. 19, no. 8, 2015, pp. 431 – 438. DOI 10.1016/j.tics.2015.06.004

  147. Li Huiyan, Sun Xiaojuan, Xiao Jinghua: Impacts of clustering on noise-induced spiking regularity in the excitatory neuronal networks of subnetworks. Frontiers in Computational Neuroscience, Vol. 9, 2015, Article # 85. DOI 10.3389/fncom.2015.00085

  148. Harish Omri, Hansel David: Asynchronous Rate Chaos in Spiking Neuronal Circuits. PLoS Computational Biology, Vol. 11, no. 7, 2015, Article # e1004266. DOI 10.1371/journal.pcbi.1004266

  149. Li Yuye, Gu Huaguang: The Influence of Initial Values on Spatial Coherence Resonance in a Neuronal Network. Int. J. of Bifurcation & Chaos, Vol. 25, no. 8, 2015, Article # 1550104. DOI 10.1142/S0218127415501047

  150. Samura Toshikazu, Ikegaya Yuji, Sato Yasuomi D.: A neural network model of reliably optimized spike transmission. Cognitive Neurodynamics, Vol. 9, no. 3, 2015, pp. 265 – 277. DOI 10.1007/s11571-015-9329-1

  151. Brigham Marco, Destexhe Alain: Nonstationary filtered shot-noise processes and applications to neuronal membranes. Physical Review E, Vol. 91, no. 6, 2015, Article # 062102. DOI 10.1103/PhysRevE.91.062102

  152. Smith Philip L.: The Poisson shot noise model of visual short-term memory and choice response time: Normalized coding by neural population size. Journal of Mathematical Psychology, Vol. 66, 2015, pp. 41 – 52. DOI 10.1016/j.jmp.2015.03.007

  153. Paffi A., Camera F., Apollonio F., et al.: Restoring the encoding properties of a stochastic neuron model by an exogenous noise. Frontiers in Computational Neuroscience, Vol. 9, 2015, Article # 42. DOI 10.3389/fncom.2015.00042

  154. Wilson D., Holt A.B., Netoff T.I., et al.: Optimal entrainment of heterogeneous noisy neurons. Frontiers in Neuroscience, Vol. 9, 2015, Article # 192. DOI 10.3389/fnins.2015.00192

  155. Suzuki Yoshinori, Ikeda Hideaki, Miyamoto Takuya, et al.: Noise-robust recognition of wide-field motion direction and the underlying neural mechanisms in Drosophila melanogaster. Scientific Reports, Vol. 5, 2015, Article # 10253. DOI 10.1038/srep10253

  156. Davis Greg, Plaisted-Grant Kate: Low endogenous neural noise in autism. Autism, Vol. 19, no. 3, 2015, pp. 351 – 362. DOI 10.1177/1362361314552198

  157. Simonka V., Fras M., Gosak M.: Stochastic simulation of the circadian rhythmicity in the SCN neuronal network. Physica A - Statistical Mechanics and its Applications, Vol. 424, 2015, pp. 1 – 10. DOI 10.1016/j.physa.2014.12.034

  158. Bukoski A., Steyn-Ross D.A., Steyn-Ross Moira L.: Channel-noise-induced critical slowing in the subthreshold Hodgkin-Huxley neuron. Physical Review E, Vol. 91, no. 3, 2015, Article # 032708. DOI 10.1103/PhysRevE.91.032708

  159. Wang Chunni, Ma Jun, Hu Bolin, et al.: Formation of multi-armed spiral waves in neuronal network induced by adjusting ion channel conductance. Int. J. of Modern Physics B, Vol. 29, no. 7, 2015, Article # 1550043. DOI 10.1142/S0217979215500435

  160. Mochol G., Hermoso-Mendizabal A., Sakata Shuzo, et al.: Stochastic transitions into silence cause noise correlations in cortical circuits. PNAS, Vol. 112, no. 11, 2015, pp. 3529 – 3534. DOI 10.1073/pnas.1410509112

  161. Ren Guo-Dong, Wu Gang, Ma Jun, et al.: Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse. Acta Physica Sinica, Vol. 64, no. 5, 2015, Article # 058702. DOI 10.7498/aps.64.058702

  162. Wu Yanan, Gong Yubing, Wang Qi: Random coupling strength-induced synchronization transitions in neuronal network with delayed electrical and chemical coupling. Physica A - Statistical Mechanics and its Applications, Vol. 421, 2015, pp. 347 – 354. DOI 10.1016/j.physa.2014.11.052

  163. Bressloff Paul C.: Path-Integral Methods for Analyzing the Effects of Fluctuations in Stochastic Hybrid Neural Networks. Journal of Mathematical Neuroscience, Vol. 5, 2015, Article # UNSP 4. DOI 10.1186/s13408-014-0016-z

  164. Anderson D.F., Ermentrout B., Thomas P.J.: Stochastic representations of ion channel kinetics and exact stochastic simulation of neuronal dynamics. Journal of Computational Neuroscience, Vol. 38, no. 1, 2015, pp. 67 – 82. DOI 10.1007/s10827-014-0528-2

  165. Yu Haitao, Guo Xinmeng, Wang Jiang, et al.: Spike coherence and synchronization on Newman-Watts small-world neuronal networks modulated by spike-timing-dependent plasticity. Physica A - Statistical Mechanics and its Applications, Vol. 419, 2015, pp. 307 – 317. DOI 10.1016/j.physa.2014.10.031

  166. Mueller-Hansen F., Droste F., Lindner B.: Statistics of a neuron model driven by asymmetric colored noise. Physical Review E, Vol. 91, no. 2, 2015, Article # 022718. DOI 10.1103/PhysRevE.91.022718

  167. Ma Jun, Qin Huxin, Song Xinlin, et al.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. of Modern Physics B, Vol. 29, no. 1, 2015, Article # 1450239. DOI 10.1142/S0217979214502397

  168. Stepp N., Plenz D., Srinivasa Narayan: Synaptic Plasticity Enables Adaptive Self-Tuning Critical Networks. PLoS Computational Biology, Vol. 11, no. 1, 2015, Article # e1004043. DOI 10.1371/journal.pcbi.1004043

  169. Wei Yi, Koulakov A.A.: Long-Term Memory Stabilized by Noise-Induced Rehearsal. Journal of Neuroscience, Vol. 34, no. 47, 2014, pp. 15804 – 15815. DOI 10.1523/JNEUROSCI.3929-12.2014

  170. Suzuki J., Phan D.H., Budiman H.: A Nonparametric Stochastic Optimizer for TDMA-Based Neuronal Signaling. IEEE Trans on NanoBioscience, Vol. 13, no. 3, 2014, pp. 244 – 254. DOI 10.1109/TNB.2014.2355015

  171. Nigmatullin R.R., Giniatullin R.A., Skorinkin A.I.: Membrane current series monitoring: essential reduction of data points to finite number of stable parameters. Frontiers in Computational Neuroscience, Vol. 8, 2014, Article # 120 (12 pages). DOI 10.3389/fncom.2014.00120

  172. Supèr H., Roméo A.: Approximate Emergent Synchrony in Spatially Coupled Spiking Neurons with Discrete Interaction. Neural Computation, Vol. 26, no. 11, 2014, pp. 2419 – 2440. DOI 10.1162/NECO_a_00658

  173. Karbasi A., Salavati A., Shokrollahi A., Varshney L.: Noise Facilitation in Associative Memories of Exponential Capacity. Neural Computation, Vol. 26, no. 11, 2014, pp. 2493 – 2526. DOI 10.1162/NECO_a_00655

  174. Cogno S., Schreiber S., Samengo I.: Dynamics and Reliability of Bistable Neurons Driven with Time-Dependent Stimuli. Neural Computation, Vol. 26, no. 12, 2014, pp. 2798 – 2826. DOI 10.1162/NECO_a_00671

  175. Giusti C., Itskov V.: A No-Go Theorem for One-Layer Feedforward Networks. Neural Computation, Vol. 26, no. 11, 2014, pp. 2527 – 2540. DOI 10.1162/NECO_a_00657

  176. Mostafa H., Indiveri G.: Sequential activity in asymmetrically coupled winner-take-all circuits. Neural Computation, Vol. 26, no. 9, 2014, pp. 1973-2004. DOI 10.1162/NECO_a_00619

  177. Barsakcioglu D.Y., Yan Liu, Bhunjun P., Navajas J., Eftekhar A., Jackson A., Quian Quiroga R., Constandinou T.G.: An Analogue Front-End Model for Developing Neural Spike Sorting Systems. IEEE Trans. on Biomedical Circuits and Systems, Vol. 8, no. 2, 2014, pp. 216 – 227 DOI 10.1109/TBCAS.2014.2313087

  178. Bashkirtseva I., Ryashko L., Slepukhina E.: Noise-Induced Oscillating Bistability and Transition to Chaos in Fitzhugh–Nagumo Model. Fluct. Noise Lett., Vol. 13, no. 01, 2014, Article # 1450004. DOI 10.1142/S0219477514500047

  179. Bancroft T.D., Hogeveen J., Hockley W.E., Servos P.: TMS-induced neural noise in sensory cortex interferes with short-term memory storage in prefrontal cortex. Frontiers in Computational Neuroscience, Vol. 8, 2014, Article # 23. DOI 10.3389/fncom.2014.00023

  180. Diez A., Suazo V., Casado P., Martin-Loeches M., Victoria Perea M., Molina V.: Frontal gamma noise power and cognitive domains in schizophrenia. Psychiatry Research-Neuroimaging, Vol. 221, no. 1, 2014, pp. 104 – 113. DOI 10.1016/j.pscychresns.2013.11.001

  181. Deger M., Schwalger T., Naud R., et al.: Fluctuations and information filtering in coupled populations of spiking neurons with adaptation. Physical Review E, Vol. 90, no. 6, 2014, Article # 062704. DOI 10.1103/PhysRevE.90.062704

  182. Li Yu-Ye, Ding Xue-Li: Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network. Communications in Theoretical Physics, Vol. 62, no. 6, 2014, pp. 917 – 926. ISSN: 0253-6102

  183. Gjorgjieva J., Mease R.A., Moody W.J., et al.: Intrinsic Neuronal Properties Switch the Mode of Information Transmission in Networks. PLoS Computational Biology, Vol. 10, no. 12, 2014, Article # e1003962. DOI 10.1371/journal.pcbi.1003962

  184. Puzerey P.A., Decker M.J., Galan R.F.: Elevated serotonergic signaling amplifies synaptic noise and facilitates the emergence of epileptiform network oscillations. Journal of Neurophysiology, Vol. 112, no. 10, 2014, pp. 2357 – 2373. DOI 10.1152/jn.00031.2014

  185. Lopes M.A., Lee K.-E., Goltsev A.V., Mendes J.F.: Noise-enhanced nonlinear response and the role of modular structure for signal detection in neuronal networks. Physical Review E, Vol. 90, no. 5, 2014, Article # 052709. DOI 10.1103/PhysRevE.90.052709

  186. Pettersen K.H., Linden H., Tetzlaff T., Einevoll G.T.: Power Laws from Linear Neuronal Cable Theory: Power Spectral Densities of the Soma Potential, Soma Membrane Current and Single-Neuron Contribution to the EEG. PLoS Computational Biology, Vol. 10, no. 11, 2014, Article # e1003928. DOI 10.1371/journal.pcbi.1003928

  187. Deng Bin, Wang Lin, Wang Jiang, et al.: Endogenous fields enhanced stochastic resonance in a randomly coupled neuronal network. Chaos Solitons & Fractals, Vol. 68, 2014, pp. 30 – 39. DOI 10.1016/j.chaos.2014.07.006

  188. Marin B., Pinto R.D., Elson R.C., Colli E.: Noise, transient dynamics, and the generation of realistic interspike interval variation in square-wave burster neurons. Physical Review E, Vol. 90, no. 4, 2014, Article # 042718. DOI 10.1103/PhysRevE.90.042718

  189. Hertaeg L., Durstewitz D., Brunel N.: Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise. Frontiers in Computational Neuroscience, Vol. 8, 2014, Article # UNSP 116. DOI 10.3389/fncom.2014.00116

  190. Wu Yanan, Gong Yubing, Wang Qi: Noise-induced synchronization transitions in neuronal network with delayed electrical or chemical coupling. European Physical Journal B, Vol. 87, no. 9, 2014, Article # 198. DOI 10.1140/epjb/e2014-50437-1

  191. Chen Jianchun, Ding Shaojie, Li Hui, He G.L., Zhang X.J.: Synchronization and array-enhanced resonances in delayed coupled neuronal network with channel noise. Chaos, Vol. 24, no. 3, 2014, Article # 033131. DOI 10.1063/1.4894463

  192. Yu Haitao, Guo Xinmeng, Wang Jiang, Deng B., Wei X.L.: Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks. Chaos, Vol. 24, no. 3, 2014, Article # 033125. DOI 10.1063/1.4893773

  193. Yilmaz Ergin: Impacts of hybrid synapses on the noise-delayed decay in scale-free neural networks. Chaos Solitons & Fractals, Vol. 66, 2014, pp. 1 – 8. DOI 10.1016/j.chaos.2014.05.001

  194. Kalitzin S., Koppert M., Petkov G., Da Silva F.L.: Multiple Oscillatory States in Models of Collective Neuronal Dynamics. Int. J. of Neural Systems, Vol. 24, no. 6, 2014, Article # 1450020. DOI 10.1142/S0129065714500208

  195. Schwabedal J.T.C., Neiman A.B., Shilnikov A.L.: Robust design of polyrhythmic neural circuits. Physical Review E, Vol. 90, no. 2, 2014, Article # 022715. DOI 10.1103/PhysRevE.90.022715

  196. Moreno-Bote Ruben: Poisson-Like Spiking in Circuits with Probabilistic Synapses. PLoS Computational Biology, Vol. 10, no. 7, 2014, Article # e1003522. DOI 10.1371/journal.pcbi.1003522

  197. McDonough I.M., Nashiro Kaoru: Network complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project. Frontiers in Human Neuroscience, Vol. 8, 2014, Article # 409. DOI 10.3389/fnhum.2014.0040

  198. Heams Thomas: Randomness in biology. Mathematical Structures in Computer Science, Vol. 24, no. 3, Special Issue: SI, 2014, Article # e240308. DOI 10.1017/S096012951200076X

  199. Sun Xiaojuan, Zheng Yanhong: Effects of Time-Periodic Intercoupling Strength on the Spiking Regularity of a Clustered Neuronal Network. Int. J. of Bifurcation & Chaos, Vol. 24, no. 6, 2014, Article # 1450076. DOI 10.1142/S021812741450076X

  200. Chicharro Daniel: A Causal Perspective on the Analysis of Signal and Noise Correlations and Their Role in Population Coding. Neural Computation, Vol. 26, no. 6, 2014, pp. 999 – 1054. DOI 10.1162/NECO_a_00588

  201. Marmari H., Vardi R., Kanter I.: Chaotic and non-chaotic phases in experimental responses of a single neuron. EPL, Vol. 106, no. 4, 2014, Article # 46002. DOI 10.1209/0295-5075/106/46002

  202. Burgess Christopher P., Burges Neil: Controlling Phase Noise in Oscillatory Interference Models of Grid Cell Firing. Journal of Neuroscience, Vol. 34, no. 18, 2014, pp. 6224 – 6232. DOI 10.1523/JNEUROSCI.2540-12.2014

  203. Liu Ying, Xu Xinmin: Stochastic and Coherence Resonance in a Dressed Neuron Model. Int. J. of Bifurcation & Chaos, Vol. 24, no. 4, 2014, Article # 1450052. DOI 10.1142/S0218127414500527

  204. Zheng Yanhong, Wang Qingyun, Danca M.-F.: Noise induced complexity: patterns and collective phenomena in a small-world neuronal network. Cognitive Neurodynamics, Vol. 8, no. 2, 2014, pp. 143 – 149. DOI 10.1007/s11571-013-9257-x

  205. Liu Chen, Wang Jiang, Yu Haitao, et al.: The effects of time delay on the stochastic resonance in feed-forward-loop neuronal network motifs. Communications in Nonlinear Science & Numerical Simulation, Vol. 19, no. 4, 2014, pp. 1088 – 1096. DOI 10.1016/j.cnsns.2013.08.021

  206. Markovic Dimitrije, Gros Claudius: Power laws and self-organized criticality in theory and nature. Physics Reports – Rev. Section of Physics Lett., Vol. 536, no. 2, 2014, pp. 41 – 74. DOI 10.1016/j.physrep.2013.11.002

  207. Toutounji Hazem, Pipa Gordon: Spatiotemporal Computations of an Excitable and Plastic Brain: Neuronal Plasticity Leads to Noise-Robust and Noise-Constructive Computations. PLoS Computational Biology, Vol. 10, no. 3, 2014, Article # e1003512. DOI 10.1371/journal.pcbi.1003512

  208. Uzun R., Ozer M., Perc M.: Can scale-freeness offset delayed signal detection in neuronal networks? EPL, Vol. 105, no. 6, 2014, Article # 60002. DOI 10.1209/0295-5075/105/60002

  209. Sun Xiao-Juan, Lu Qi-Shao: Non-Gaussian Colored Noise Optimized Spatial Coherence of a Hodgkin-Huxley Neuronal Network. Chinese Physics Lett. Vol. 31, no. 2, 2014, Article # 020502. DOI 10.1088/0256-307X/31/2/020502

  210. Kriener B., Helias M., Rotter S., et al.: How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime. Frontiers in Computational Neuroscience, Vol. 7, 2014, Article # 187. DOI 10.3389/fncom.2013.00187

  211. Lee K.-E., Lopes M.A., Mendes J.F.F., et al.: Critical phenomena and noise-induced phase transitions in neuronal networks. Physical Review E, Vol. 89, no. 1, 2014, Article # 012701. DOI 10.1103/PhysRevE.89.012701

  212. Jenkinson Garrett, Goutsias John: Intrinsic Noise Induces Critical Behavior in Leaky Markovian Networks Leading to Avalanching. PLoS Computational Biology, Vol. 10, no. 1, 2014, Article # e1003411. DOI 10.1371/journal.pcbi.1003411

  213. D'Angelo Egidio: The Organization of Plasticity in the Cerebellar Cortex: From Synapses to Control. Edited by Ramnani N: Cerebellar Learning, Book Series: Progress in Brain Research, Vol. 210, 2014, pp. 31 – 58. DOI 10.1016/B978-0-444-63356-9.00002-9

  214. Lou Xuyang: Stochastic Resonance in Neuronal Network Motifs with Ornstein-Uhlenbeck Colored Noise. Mathematical Problems in Engineering, 2014, Article # 902395. DOI 10.1155/2014/902395

  215. Du Ying, Wang Rubin, Qu Jingyi: Noise and Synchronization Analysis of the Cold-Receptor Neuronal Network Model. Discrete Dynamics in Nature and Society, 2014, Article # 173894. DOI 10.1155/2014/173894

  216. Wang Maosheng, Sun Runzhi : Cooperative effects of inherent stochasticity and random long-range connections on synchronization and coherence resonance in diffusively coupled calcium oscillators. Physica A - Statistical Mechanics and its Applications, Vol. 398, 2014, pp. 243 – 251. DOI 10.1016/j.physa.2013.12.024

  217. Agliari E., Barra A., Galluzzi A., Isopi M.: Multitasking attractor networks with neuronal threshold noise. Neural Networks, Vol. 49, 2014, pp. 19 – 29. DOI 10.1016/j.neunet.2013.09.008

  218. Yang X. L., Jia Y. B., Zhang L.: Impact of bounded noise and shortcuts on the spatiotemporal dynamics of neuronal networks. Physica A - Statistical Mechanics and its Applications, Vol. 393, 2014, pp. 617 – 623. DOI 10.1016/j.physa.2013.09.021

  219. Pisarchik A.N., Jaimes-Reategui R., Magallon-Garcia C.D.A., Castillo-Morales C.O.: Critical slowing down and noise-induced intermittency in bistable preception: bifurcation analysis. Biological Cybernetics, Vol. 108, no. 4, 2014, pp. 397 – 404. DOI 10.1007/s00422-014-0607-5

  220. Pang J.C.S., Monterola C.P., Bantang J.Y.: Noise-induced synchronization in a lattice Hodgkin-Huxley neural network. Physica A - Statistical Mechanics and its Applications, Vol. 393, 2014, pp. 638 – 645. DOI 10.1016/j.physa.2013.08.069

  221. Hui Q., Haddad W.M., Bailey J.M., Hayakawa T.: A Stochastic Mean Field Model for an Excitatory and Inhibitory Synaptic Drive Cortical Neuronal Network. IEEE Trans on Neural Networks and Learning Systems, Vol. 25, no. 4, 2014, pp. 751 – 763. DOI 10.1109/TNNLS.2013.2281065

  222. Guler Marifi: An Investigation of the Stochastic Hodgkin-Huxley Models Under Noisy Rate Functions. Neural Networks, Vol. 25, no. 9, 2013, pp. 2355 – 2372. DOI 10.1162/NECO_a_00487

  223. L'Esperance P.-Y., Labib R.: Model of an Excitatory Synapse Based on Stochastic Processes. IEEE Trans on Neural Networks and Learning Systems, Vol. 24, no. 9, 2013, pp. 1449 – 1458. DOI 10.1109/TNNLS.2013.2260559

  224. Sum J., Chi-Sing Leung, Ho K.: Effect of Input Noise and Output Node Stochastic on Wang's kWTA. IEEE Trans on Neural Networks and Learning Systems, Vol. 24, no. 9, 2013, pp 1472 – 1478. DOI 10.1109/TNNLS.2013.2257182

  225. El-Melegy M.T.: Random Sampler M-Estimator Algorithm With Sequential Probability Ratio Test for Robust Function Approximation Via Feed-Forward Neural Networks. IEEE Trans on Neural Networks and Learning Systems, Vol. 24, no. 7, 2013, pp. 1074 – 1085. DOI 10.1109/TNNLS.2013.2251001

  226. Medvedev G.S., Zhuravytska S.: Shaping bursting by electrical coupling and noise. Biological Cybernetics, Vol. 106, no. 2, 2012, pp. 67 – 88. DOI 10.1007/s00422-012-0481-y

  227. Zeldenrust F., Chameau P.J.P.; Wadman W.J.: Reliability of spike and burst firing in thalamocortical relay cells. Journal of Computational Neuroscience, Vol. 35, no. 3, 2013, pp. 317 – 334. DOI 10.1007/s10827-013-0454-8

  228. Yang Tang, Wai Keung Wong: Distributed Synchronization of Coupled Neural Networks via Randomly Occurring Control. IEEE Trans on Neural Networks and Learning Systems, Vol. 24, no. 3, 2013, pp. 435 – 447. DOI 10.1109/TNNLS.2012.2236355

  229. di Volo M., Livi R.: The influence of noise on synchronous dynamics in a diluted neural network. Chaos Solitons & Fractals, Vol. 57, 2013, pp. 54 – 61. DOI 10.1016/j.chaos.2013.08.012

  230. Lundqvist M., Herman P., Palva M., Palva S., Silverstein D., Lansner A.: Stimulus detection rate and latency, firing rates and 1-40 Hz oscillatory power are modulated by infra-slow fluctuations in a bistable attractor network model. Neuroimage, Vol. 83, 2013, pp. 458 – 471. DOI 10.1016/j.neuroimage.2013.06.080

  231. Girardi-Schappo M., Tragtenberg M. H. R., Kinouchi O. : A brief history of excitable map-based neurons and neural networks. Journal of Neuroscience Methods, Vol. 220, no. 2, 2013, pp. 116 – 130. DOI 10.1016/j.jneumeth.2013.07.014

  232. Wang Q., Zheng Y., Ma Jun: Cooperative dynamics in neuronal networks. Chaos Solitons & Fractals, Vol. 56, Special no. SI, 2013, pp. 19 – 27.  DOI 10.1016/j.chaos.2013.05.003

  233. Uzuntarla M., Uzun R. ,Yilmaz E., Ozer M., Perc M.: Noise-delayed decay in the response of a scale-free neuronal network. Chaos Solitons & Fractals, Vol. 56, Special no. SI, 2013, pp. 202 – 208. DOI 10.1016/j.chaos.2013.08.009

  234. Yilmaz E., Ozer M.: Collective firing regularity of a scale-free Hodgkin-Huxley neuronal network in response to a subthreshold signal. Physics Lett. A, Vol. 377, no. 18, pp. 1301-1307, 2013 DOI 10.1016/j.physleta.2013.03.007

  235. Bordet M., Morfu S.: Experimental and numerical study of noise effects in a FitzHugh-Nagumo system driven by a biharmonic signal. Chaos Solitons & Fractals, Vol. 54, 2013,  pp. 82 – 89.  DOI 10.1016/j.chaos.2013.05.020

  236. Zare Marzieh, Grigolini P.: Criticality and avalanches in neural networks. Chaos Solitons & Fractals, Vol. 55,  Special issue SI, 2013, pp. 80 – 94. DOI 10.1016/j.chaos.2013.05.009

  237. Mueller F., Schimansky-Geier L., Postnov D. E.: Interaction of noise supported Ising-Bloch fronts with Dirichlet boundaries. Ecological Complexity, Vol. 14, Special Issue: SI, 2013, pp. 21 – 36. DOI 10.1016/j.ecocom.2012.11.002

  238. Park In Jun, Bobkov Y.V., Ache B.W., Principe J.C: Quantifying bursting neuron activity from calcium signals using blind deconvolution. Journal of Neuroscience Methods, Vol. 218, no. 2, 2013, pp. 196 – 205. DOI 10.1016/j.jneumeth.2013.05.007

  239. Djeundam S.R.D., Yamapi R., Kofane T.C., Aziz-Alaoui M.A: Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model. Chaos, Vol. 23, no. 3, 2013, Article # 033125. DOI 10.1063/1.4818545

  240. Gong Yubing, Xu Bo, Wu Yanan: Adaptive coupling optimized spiking coherence and synchronization in Newman-Watts neuronal networks. Chaos, Vol. 23, no. 3, 2013, Article # 033105. DOI 10.1063/1.4813224

  241. Cofre R., Cessac B.: Dynamics and spike trains statistics in conductance-based integrate-and-fire neural networks with chemical and electric synapses. Chaos Solitons & Fractals, Vol. 50, Special Issue SI, 2013, pp. 13 – 31. DOI 10.1016/j.chaos.2012.12.006

  242. Zeldenrust F., Wadman W. J.: Modulation of spike and burst rate in a minimal neuronal circuit with feed-forward inhibition. Neural Networks, Vol. 40, 2013, pp. 1 – 17. DOI 10.1016/j.neunet.2012.12.008

  243. Xiaoming Liang, Liang Zhao: Phase-Noise-Induced Resonance in Arrays of Coupled Excitable Neural Models. IEEE Trans on Neural Networks and Learning Systems, Vol. 24, no. 8, 2013, pp.1339 – 1345. DOI 10.1109/TNNLS.2013.2254126

  244. M. G. Riedler, E. Buckwar: Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations. Journal of Mathematical Neuroscience, Vol. 3, no 1, 2013. DOI 10.1186/2190-8567-3-1

  245. D. Holstein, A.V. Goltsev, J.F.F. Mendes: Impact of noise and damage on collective dynamics of scale-free neuronal networks. Phys. Rev. E, Vol. 87, no. 3, 2013, pp 032717-1 – 032717-13. DOI 10.1103/PhysRevE.87.032717

  246. Asay Y., Villa A.E. : Integration and transmission of distributed deterministic neural activity in feed-forward networks. Brain Res., 2012, Vol. 1434, pp.17 – 33. DOI 10.1016/j.brainres.2011.10.012

  247. John Sum, Chi-sing Leung, Kevin Ho: Convergence Analyses on On-Line Weight Noise Injection-Based Training Algorithms for MLPs. IEEE Trans on Neural Networks and Learning Systems, Vol. 23, no. 11, 2012, 1827 – 1840. DOI 10.1109/TNNLS.2012.2210243

  248. John Sum, Chi-sing Leung, Kevin Ho: On-Line Node Fault Injection Training Algorithm for MLP Networks: Objective Function and Convergence Analysis. IEEE Trans on Neural Networks and Learning Systems, Vol. 23, no. 2, 2012, pp. 211 – 222. DOI 10.1109/TNNLS.2011.2178477

  249. Lopez C.M., Welkenhuysen M., Musa S., Eberle W., Bartic C., Puers R., Gielen G.: Towards a noise prediction model for in vivo neural recording. IEEE Annual Int. Conf. of Engineering in Medicine and Biology Society (EMBC), 2012, pp. 759 – 762. DOI 10.1109/EMBC.2012.6346042

  250. P.C. Bressloff, M.A. Webber: Front propagation in stochastic neural fields. SIAM J. Appl. Dyn. Syst., Vol. 11, no. 2, 2012, pp 708 – 740. DOI 10.1137/110851031

  251. Chen Hsin, Lu Chih-Chen, Wu Yi-Da, Chiu Tang-Jung: Learning from biological neurons to compute with electronic noise special. IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD), 2012, pp. 168 – 171. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6386605&isnumber=6386569

  252. Alijani A. K., Richardson M. J. E.: Rate response of neurons subject to fast or frozen noise: From stochastic and homogeneous to deterministic and heterogeneous populations. Physical Review E, Vol. 84, no. 1, 2011, Article # 011919. DOI 10.1103/PhysRevE.84.011919

  253. Kevin Ho, Chi-sing Leung, John Sum: Objective Functions of the Online Weight noise injection training algorithms for MLP. IEEE Trans on Neural Networks, Vol. 22, no. 2, 2011, pp. 317 – 323. DOI 10.1109/TNN.2010.2095881

  254. Medina J.M., Carvalho J., Franco S.: Properties of neural noise in amblyopia. 21st Int. Conf. on Noise and Fluctuations (ICNF), 2011, pp. 421 – 424. DOI 10.1109/ICNF.2011.5994360

  255. Li Wang, Yubing Gong, Xiu Lin: Enhancement of Intrinsic Spiking Coherence by ExternaL Non-Gaussian Noise in a Stochastic Hodgkin–Huxley Neuron. Fluct. Noise Lett., Vol. 10, no. 04, 2011, pp. 359 – 369. DOI 10.1142/S0219477511000624

  256. Yubing Gong, Xiu Lin, Li Wang: External Non-Gaussian Noise-Enhanced Collective Intrinsic Spiking Coherence in an Array of Stochastic Hodgkin–Huxley Neurons. Fluct. Noise Lett., Vol. 10, no. 04, 2011, pp. 395 – 404. DOI 10.1142/S021947751100065X

  257. T. Wyckhuys, P. Boon, R. Raedt, B. Van Nieuwenhuyse, K. Vonck, W. Wadman: Suppression of hippocampal epileptic seizures in the kainate rat by Poisson distributed stimulation. Epilepsia, Vol. 51, no. 11, 2010, pp. 2297 – 2304. DOI 10.1111/j.1528-1167.2010.02750.x

  258. P. C. Bressloff: Metastable states and quasicycles in a stochastic Wilson-Cowan model of neural population dynamics. Phys. Rev. E., Vol. 82, no. 5, 2010, pp 051903-1 – 051903-13. DOI 10.1103/PhysRevE.82.051903

  259. Kevin Ho, Chi-sing Leung, John Sum: Analysis on the Convergence and Objective Functions of Some Fault/Noise Injection-Based On-line Learning Algorithms for RBF Networks. IEEE Trans on Neural Networks, Vol. 21, no. 6, 2010, pp. 938 – 947. DOI 10.1109/TNN.2010.2046179

  260. Benayoun M., Cowan J.D., van Drongelen W., Wallace E.: Avalanches in a Stochastic Model of Spiking Neurons. PLoS Comput. Biol., Vol. 6, no. 7, 2010, pp. e1000846. DOI 10.1371/journal.pcbi.1000846

  261. Zeldenrust F., Wadman W. J.: Two forms of feedback inhibition determine the dynamical state of a small hippocampal network. Neural Networks, Vol. 22, no. 8, 2009, pp. 1139 – 1158. DOI 10.1016/j.neunet.2009.07.015

  262. Patel A., Kosko B.: Neural signal-detection noise benefits based on error probability. IJCNN 2009 (Int. Joint Conf. on Neural Networks), 2009, pp. 2423 – 2430. DOI 10.1109/IJCNN.2009.5179058

  263. Ryota Kobayashi: The influence of firing mechanisms on gain modulation. J. Stat. Mech., 2009, P01017. DOI 10.1088/1742-5468/2009/01/P01017

  264. O.C. Akin, P. Paradisi, P. Grigolini: Perturbation-induced emergence of Poisson-like behavior in non-Poisson systems. J. Stat. Mech., 2009, P01013. DOI 10.1088/1742-5468/2009/01/P01013

  265. P.C. Bressloff: Stochastic neural field theory and the system-size expansion. SIAM J. Appl. Math., Vol. 70, no. 5, 2009, pp. 1488 – 1521. DOI 10.1137/090756971

  266. A.A. Faisal, L. P. J. Selen, D. M. Wolpert: Noise in the nervous system. Nature Reviews Neuroscience, Vol. 9, 2008, pp. 292 – 303. DOI 10.1038/nrn2258

  267. Asay Y., Villa A.E. : Reconstruction of underlying nonlinear deterministic dynamics embedded in noisy spike trains. J. Biological Phys., Vol. 34, no. 3-4, 2008, pp. 325 – 340. DOI 10.1007/s10867-008-9093-0

  268. P. S. Swain, A. Longtin: Noise in genetic and neural networks. Chaos, Vol. 16, no 2, 2006, pp 026101 (6 pages). DOI 10.1063/1.2213613

  269. G Schmid, I Goychuk, P Hänggi: Capacitance fluctuations causing channel noise reduction in stochastic Hodgkin–Huxley systems. Physical Biology, Vol. 3, no 4, 2006, pp. 248 – 254. DOI 10.1088/1478-3975/3/4/002

  270. Gianni M., Maggio F., Liberti M., Paffi A., Apollonio F., d'Inzeo G.: Modeling Biological Noise in Firing and Bursting Neurons in the Presence of an Electromagnetic Field. IEEE Int. EMBS Conf. on Neural Engineering, 2005, pp. 237 – 240. DOI 10.1109/CNE.2005.1419600

  271. M. J. Richardson, W. Gerstner: Statistics of subthreshold neuronal voltage fluctuations due to conductance-based synaptic shot noise. Chaos, Vol. 16, no. 2, 2006, 026106 (10 pages). DOI 10.1063/1.2203409

  272. P. Balenzuela, J. Garcia-Ojalvo: Role of chemical synapses in coupled neurons with noise. Physical Review E, Vol. 72, 2005, pp. 021901-1 – 021901-7. DOI 10.1103/PhysRevE.72.021901

  273. J.-M. Fellous, M. Rudolph, A. Destexhe, T. J. Sejnowski: Synaptic Background Noise Controls the Input/Output Characteristics of Single Cells in an In Vitro Model of In Vivo Activity. Neuroscience, Vol. 122, 2003, pp. 811 – 829. doi:10.1016/j.neuroscience.2003.08.027

  274. Parnas B.R.: Noise and neuronal populations conspire to encode simple waveforms reliably. IEEE Trans. on Biomedical Engineering, Vol. 43, no. 3, 1996, pp. 313 – 318. DOI 10.1109/10.486289

  275. Ginzburg I., H. Sompolinsky: Theory of correlations in stochastic neural networks. Physical Review E , Vol. 50, no. 4, 1994, pp. 3171 – 3191. DOI 10.1103/PhysRevE.50.3171

Links:

http://www.nslij-genetics.org/wli/1fnoise/ (A bibliography on 1/f noise in biosystems)

http://papers.cnl.salk.edu/PDFs/

http://iopscience.iop.org/1742-5468/focus/extra.focus5

 

 


Copyright 2010 © UNESCO - All Rights Reserved.