Specificity of Bionoise

Glossary Bio
Acronyms Bio

                                                    NOISE in GENE EXPRESSION

Even today a good many distinguished minds seem unable to accept or even to understand that from

a source of noise natural selection could quite unaided have drawn all the music of the biosphere

(Jacques Monod)

  1. Tschirhart Hugo, Platini Thierry: Analytical results for a stochastic model of gene expression with arbitrary partitioning of proteins. Journal of Physics A - Mathematical and Theoretical, Vol. 51, no. 19, 2018, Article # 195601. DOI 10.1088/1751-8121/aab968

  2. Barroso Gustavo Valadares, Puzovic Natasa, Dutheil Julien Y.: The Evolution of Gene-Specific Transcriptional Noise Is Driven by Selection at the Pathway Level. Genetics, Vol. 208, no. 1, 2018, pp. 173 – 189. DOI 10.1534/genetics.117.300467

  3. Wei Wu: MicroRNA, Noise, and Gene Expression Regulation. Methods in Molecular Biology, Vol. 1699, 2018, pp. 91 – 96. DOI 10.1007/978-1-4939-7435-1_7

  4. d’Onofrio A., Caravagna G., de Franciscis S.: Bounded noise induced first-order phase transitions in a baseline non-spatial model of gene transcription. Physica A: Statistical Mechanics and its Applications, Vol. 492, 2018, pp. 2056 – 2068. DOI 10.1016/j.physa.2017.11.123

  5. Blum C.F., Heramvand N., Khonsari A.S., Kollmann M.: Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies. Nature Communications, Vol. 9, 2018, Article #: 133. DOI 10.1038/s41467-017-02489-x

  6. Kleijn Istvan T., Krah Laurens H.J., Hermsen Rutger: Noise propagation in an integrated model of bacterial gene expression and growth. BioRxiv, 2018. DOI 10.1101/246165

  7. Chunhe Li: Landscape of gene networks for random parameter perturbation. Integrative Biology, Vol. 10, no. 2, 2018, pp. 92 – 99. DOI 10.1039/C7IB00198C

  8. Ochab-Marcinek Anna: Modeling of stochastic gene expression. Institute of Physical Chemistry, Polish Academy of Sciences, Ph.D., 2018, 44 pages.

  9. Park Seong Jun, Song Sanggeun, Yang Gil-Suk, et al.: The Chemical Fluctuation Theorem governing gene expression. Nature Communications, Vol. 9, 2018, Article # 297. DOI 10.1038/s41467-017-02737-0

  10. Patange S., Girvan M., Larson D.R.: Single-cell systems biology: Probing the basic unit of information flow. Current Opinion in Systems Biology, Vol. 8, 2018, pp. 7 – 15. DOI 10.1016/j.coisb.2017.11.011

  11. Jia Chen, Qian Hong, Chen Min, et al.: Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks. Journal of Chemical Physics, Vol. 148, no. 9, 2018, Article # 095102. DOI 10.1063/1.5009749

  12. Guillermo Rodrigo: Post-transcriptional bursting in genes regulated by small RNA molecules. Physical Review E, Vol. 97, no. 3, 2018, Article # 032401. DOI 10.1103/PhysRevE.97.032401

  13. Mukherji Sutapa: Threshold response and bistability in gene regulation by small noncoding RNA. European Physical Journal E, Vol. 41, no. 1, 2018, Article # 12. DOI 10.1140/epje/i2018-11617-8

  14. Lueck Anja, Klimmasch Lukas, Grossmann Peter, et al.: Computational Investigation of Environment-Noise Interaction in Single-Cell Organisms: The Merit of Expression Stochasticity Depends on the Quality of Environmental Fluctuations. Scientific Reports, Vol. 8, 2018, Article # 333. DOI 10.1038/s41598-017-17441-8

  15. Kaminska K., Czarnecka A.M., Khan M.I., et al.: Effects of cell-cell crosstalk on gene expression patterns in a cell model of renal cell carcinoma lung metastasis. Int. J. of Oncology, Vol. 52, no. 3, 2018, pp. 768 – 786. DOI 10.3892/ijo.2017.4234

  16. Lipan Ovidiu, Ferwerda Cameron: Hill functions for stochastic gene regulatory networks from master equations with split nodes and time-scale separation. Physical Review E, Vol. 97, no. 2, 2018, Article # 022413. DOI 10.1103/PhysRevE.97.022413

  17. Liu Yuhang, Zhang Jinfeng, Qiu Xing: Super-delta: a new differential gene expression analysis procedure with robust data normalization. BMC Bioinformatics, Vol. 18, 2017, Article # 582. DOI 10.1186/s12859-017-1992-2

  18. Schultheiss Araujo I., Pietsch J.M., Keizer E.M., et al.: Stochastic gene expression in Arabidopsis thaliana. Nature Communications, Vol. 8, 2017, Article # 2132. DOI 10.1038/s41467-017-02285-7

  19. Jia Bochao, Xu Suwa, Xiao Guanghua, et al.: Learning gene regulatory networks from next generation sequencing data. Biometrics, Vol. 73, no. 4, 2017, pp. 1221 – 1230. DOI 10.1111/biom.12682

  20. Shi Changhong, Wang Shuqiang, Ruan Honglian: Effect of post-transcriptional feedback on the stochastic effect in gene expression. Chinese Journal of Physics, Vol. 55, no. 6, 2017, pp. 2491 – 2500. DOI 10.1016/j.cjph.2017.10.006

  21. Faure André J., Schmiedel Jorn M., Lehner Ben: Systematic Analysis of the Determinants of Gene Expression Noise in Embryonic Stem Cells. Cell Systems, Vol. 5, no. 5, 2017, pp. 471 – 484. DOI 10.1016/j.cels.2017.10.003

  22. Jia Chen, Xie Peng, Chen Min, et al.: Stochastic fluctuations can reveal the feedback signs of gene regulatory networks at the single-molecule level. Scientific Reports, Vol. 7, 2017, Article # 16037. DOI 10.1038/s41598-017-15464-9

  23. Xu Bingxiang, Ge Hao, Zhang Zhihua: An efficient and assumption-free method to approximate protein level distribution in the two-states gene expression model. Journal of Theoretical Biology, Vol. 433, 2017, pp. 1 – 7. DOI 10.1016/j.jtbi.2017.08.019

  24. Lahiri Sourabh, Nghe Philippe, Tans Sander J., et al.: Information-theoretic analysis of the directional influence between cellular processes. PLoS One, Vol. 12, no. 11, 2017, Article # e0187431. DOI 10.1371/journal.pone.0187431

  25. Turnbull L.B., Siw G.H., Button-Simons K.A., et al.: Simultaneous genome-wide gene expression and transcript isoform profiling in the human malaria parasite. PLoS One, Vol. 12, no. 11, 2017, Article # e0187595. DOI 10.1371/journal.pone.0187595

  26. Szedlak A., Sims S., Smith N., et al.: Cell cycle time series gene expression data encoded as cyclic attractors in Hopfield systems. PLoS Computational Biology, Vol. 13, no. 11, 2017, Article # e1005849. DOI 10.1371/journal.pcbi.1005849

  27. Chubb Jonathan R.: Symmetry breaking in development and stochastic gene expression. Wiley Interdisciplinary Reviews - Developmental Biology, Vol. 6, no. 6, 2017, Article # e284. DOI 10.1002/wdev.284

  28. Hensel Zach: A plasmid-based Escherichia coli gene expression system with cell-to-cell variation below the extrinsic noise limit. PLoS One, Vol. 12, no. 10, 2017, Article # e0187259. DOI 10.1371/journal.pone.0187259

  29. Van Dyken J.D.: Noise slows the rate of Michaelis-Menten reactions. Journal of Theoretical Biology, Vol. 430, 2017, pp. 21 – 31. DOI 10.1016/j.jtbi.2017.06.039

  30. Van Dyken J.D.: Propagation and control of gene expression noise with non-linear translation kinetics. Journal of Theoretical Biology, Vol. 430, 2017, pp. 185 – 194. DOI 10.1016/j.jtbi.2017.07.006

  31. Li Qiuying, Huang Lifang, Yu Jianshe: Modulation of First-Passage Time for Bursty Gene Expression via Random Signals. Mathematical Biosciences and Engineering, Vol. 14, no. 5-6, 2017, Special Issue: SI, pp. 1261 – 1277. DOI 10.3934/mbe.2017065

  32. Razooky B.S., Cao Youfang, Hansen Maike M.K., et al.: Nonlatching positive feedback enables robust bimodality by decoupling expression noise from the mean. PLoS Biology, Vol. 15, no. 10, 2017, Article # e2000841. DOI 10.1371/journal.pbio.2000841

  33. Ren Gang, Jin Wenfei, Cui Kairong, et al.: CTCF-Mediated Enhancer-Promoter Interaction Is a Critical Regulator of Cell-to-Cell Variation of Gene Expression. PLoS Biology, Vol. 67, no. 6, 2017, pp. 1049 – 1058. DOI 10.1016/j.molcel.2017.08.026

  34. Parra M., Jung J., Boone T.D., et al.: Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station. PLoS One, Vol. 12, no. 9, 2017, Article # e0183480. DOI 10.1371/journal.pone.0183480

  35. Yoo Boyoung, Faisal Fazle Elahi, Chen Huili, et al.: Improving Identification of Key Players in Aging via Network De-Noising and Core Inference. IEEE/ACM Trans on Computational Biology and Bioinformatics, Vol. 14, no. 5, 2017, pp. 1056 – 1069. DOI 10.1109/TCBB.2015.2495170

  36. Arzalluz-Luque A., Devailly G., Mantsoki A., et al.: Delineating biological and technical variance in single cell expression data. Int. J. of Biochemistry & Cell Biology, Vol. 90, 2017, pp. 161 – 166. DOI 10.1016/j.biocel.2017.07.006

  37. Feng Yan-Ling, Dong Jian-Min, Wang Dan, et al.: Time-Delay Effects on Constitutive Gene Expression. Communications in Theoretical Physics, Vol. 68, no. 3, 2017, pp. 357 – 360. DOI 10.1088/0253-6102/68/3/357

  38. Maity Alok Kumar, Chaudhury Pinaki, Banik Suman K.: Information Theoretical Study of Cross-Talk Mediated Signal Transduction in MAPK Pathways. Entropy, Vol. 19, no. 9, 2017, Article # 469. DOI 10.3390/e19090469

  39. Jacob Aishwarya G., Smith Christopher W.J.: Intron retention as a component of regulated gene expression programs. Human Genetics, Vol. 136, no. 9, Special Issue: SI, 2017, pp. 1043 – 1057. DOI 10.1007/s00439-017-1791-x

  40. Altarawy Doaa, Eid Fatma-Elzahraa, Heath Lenwood S.: PEAK: Integrating Curated and Noisy Prior Knowledge in Gene Regulatory Network Inference. Journal of Computational Biology, Vol. 24, no. 9, 2017, pp. 863 – 873. DOI 10.1089/cmb.2016.0199

  41. Lonnstedt Ingrid M., Nelander Sven: FC1000: normalized gene expression changes of systematically perturbed human cells. Statistical Applications in Genetics and Molecular Biology, Vol. 16, no. 4, 2017, pp. 217 – 242. DOI 10.1515/sagmb-2016-0072

  42. Sharma Yogita, Dutta Partha Sharathi: Regime shifts driven by dynamic correlations in gene expression noise. Physical Review E, Vol. 96, no. 2, 2017, Article # 022409. DOI 10.1103/PhysRevE.96.022409

  43. Stapel L. Carine, Zechner Christoph, Vastenhouw Nadine L.: Uniform gene expression in embryos is achieved by temporal averaging of transcription noise. Genes & Development, Vol. 31, no. 16, 2017, pp. 1635 – 1640. DOI 10.1101/gad.302935.117

  44. Lakatos Eszter, Stumpf Michael P.H.: Control mechanisms for stochastic biochemical systems via computation of reachable sets. Royal Society Open Science, Vol. 4, no. 8, 2017, Article # 160790. DOI 10.1098/rsos.160790

  45. Petrosyan K.G., Hu Chin-Kun: Doubly stochastic (pseudo)gene expression in the regulation of cancer. Journal of Statistical Mechanics: Theory & Experiment, Vol. 2017, 2017, Article # 083501. DOI 10.1088/1742-5468/aa7abe

  46. Sturrock Marc, Li Shiyu, Shahrezaei Vahid: The influence of nuclear compartmentalisation on stochastic dynamics of self-repressing gene expression. Journal of Theoretical Biology, Vol. 424, 2017, pp. 55 – 72. DOI 10.1016/j.jtbi.2017.05.003

  47. Ángel Goñi-Moreno, Ilaria Benedetti, Juhyun Kim, Víctor de Lorenzo: Deconvolution of Gene Expression Noise into Spatial Dynamics of Transcription Factor–Promoter Interplay. ACS Synthetic Biology, Vol. 6, no. 7, 2017, pp. 1359 – 1369. DOI 10.1021/acssynbio.6b00397

  48. Bury-Moné Stéphanie, Sclavi Bianca: Stochasticity of gene expression as a motor of epigenetics in bacteria: from individual to collective behaviors. Research in Microbiology, Vol. 168, no. 6, July–August 2017, pp. 503 – 514. DOI 10.1016/j.resmic.2017.03.009

  49. Swisa Avital, Kaestner Klaus H., Dor Yuval: Transcriptional Noise and Somatic Mutations in the Aging Pancreas. Cell Metabolism, Vol. 26, no. 6, 2017, pp. 809 – 811. DOI 10.1016/j.cmet.2017.11.009

  50. Yang Hu, Liu Xiaoqin: Studies on the Clustering Algorithm for Analyzing Gene Expression Data with a Bidirectional Penalty. Journal of Computational Biology, Vol. 24, no. 7, 2017, pp. 689 – 698. DOI 10.1089/cmb.2017.0051

  51. Cole John A., Luthey-Schulten Zaida: Careful accounting of extrinsic noise in protein expression reveals correlations among its sources. Physical Review E, Vol. 95, no. 6, 2017, Article # 062418. DOI 10.1103/PhysRevE.95.062418

  52. Kar Gozde, Kim Jong Kyoung, Kolodziejczyk A.A., et al.: Flipping between Polycomb repressed and active transcriptional states introduces noise in gene expression. Nature Communications, Vol. 8, 2017, Article # 36. DOI 10.1038/s41467-017-00052-2

  53. Dacheux Estelle, Malys Naglis, Meng Xiang, et al.: Translation initiation events on structured eukaryotic mRNAs generate gene expression noise. Nucleic Acids Research, Vol. 45, no. 11, 2017, pp. 6981 – 6992. DOI 10.1093/nar/gkx430

  54. Wu Shaohuan, Li Ke, Li Yingshu, et al.: Independent regulation of gene expression level and noise by histone modifications. PLoS Computational Biology, Vol. 13, no. 6, 2017, Article # e1005585. DOI 10.1371/journal.pcbi.1005585

  55. Wu Juan, Xu Yong, Wang Haiyan, et al.: Information-based measures for logical stochastic resonance in a synthetic gene network under Levy flight superdiffusion. Chaos, Vol. 27, no. 6, 2017, Article # 063105. DOI 10.1063/1.4984806

  56. Shi Jian-Cheng, Luo Min, Dong Tao, et al.: External Noise and External Signal Induced Transition of Gene Switch and Coherence Resonance in the Genetic Regulatory System. Acta Biotheoretica, Vol. 65, no. 2, 2017, pp. 135 – 150. DOI 10.1007/s10441-017-9307-6

  57. Capp Jean-Pascal: Tissue disruption increases stochastic gene expression thus producing tumors: Cancer initiation without driver mutation. Int. J. of Cancer, Vol. 140, no. 11, 2017, pp. 2408 – 2413. DOI 10.1002/ijc.30596

  58. Pajaro M., Alonso A.A., Otero-Muras I., et al.: Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting. Journal of Theoretical Biology, Vol. 421, 2017, pp. 51 – 70. DOI 10.1016/j.jtbi.2017.03.017

  59. Ying Bei-Wen, Seno Shigeto, Matsuda Hideo, et al.: A simple comparison of the extrinsic noise in gene expression between native and foreign regulations in Escherichia coli. Biochemical and Biophysical Research Communications, Vol. 486, no. 3, 2017, pp. 852 – 857. DOI 10.1016/j.bbrc.2017.03.148

  60. Chen Yan, Li Kangshun, Chen Zhangxing, et al.: Restricted gene expression programming: a new approach for parameter identification inverse problems of partial differential equation. Soft Computing, Vol. 21, no. 10, Special Issue: SI, 2017, pp. 2651 – 2663. DOI 10.1007/s00500-015-1965-1

  61. Bokes Pavol, Singh Abhyudai: Gene expression noise is affected differentially by feedback in burst frequency and burst size. Journal of Mathematical Biology, Vol. 74, no. 6, 2017, pp. 1483 – 1509. DOI 10.1007/s00285-016-1059-4

  62. Harton Marie D., Batchelor Eric: Determining the Limitations and Benefits of Noise in Gene Regulation and Signal Transduction through Single Cell, Microscopy-Based Analysis. Journal of Molecular Biology, Vol. 429, no. 8, 2017, pp. 1143 – 1154. DOI 10.1016/j.jmb.2017.03.007

  63. Jiang Yuchao, Zhang Nancy R., Li Mingyao: SCALE: modeling allele-specific gene expression by single-cell RNA sequencing. Genome Biology, Vol. 18, 2017, Article # 74. DOI 10.1186/s13059-017-1200-8

  64. Du Manyu, Zhang Qian, Bai Lu: Three distinct mechanisms of long-distance modulation of gene expression in yeast. PLOS Genetics, Vol. 13, no. 4, 2017, Article # e1006736. DOI 10.1371/journal.pgen.1006736

  65. Das Dipjyoti, Dey Supravat, Brewster R.C., et al.: Effect of transcription factor resource sharing on gene expression noise. PLoS Computational Biology, Vol. 13, no. 4, 2017, Article # e1005491. DOI 10.1371/journal.pcbi.1005491

  66. Schor I.E., Degner J.F., Harnett Dermot, et al.: Promoter shape varies across populations and affects promoter evolution and expression noise. Nature Genetics, Vol. 49, no. 4, 2017, pp. 550 – 558. DOI 10.1038/ng.3791

  67. Bressloff Paul C.: Stochastic switching in biology: from genotype to phenotype. Journal of Physics A - Mathematical and Theoretical, Vol. 50, no. 13, 2017, Article # 133001. DOI 10.1088/1751-8121/aa5db4

  68. Schnoerr D., Sanguinetti G., Grima R.: Approximation and inference methods for stochastic biochemical kinetics - a tutorial review. Journal of Physics A - Mathematical and Theoretical, Vol. 50, no. 9, 2017, pp. 1 – 60, Article # 093001. DOI 10.1088/1751-8121/aa54d9

  69. Shamarova E., Chertovskih R., Ramos A.F., et al.: Backward-stochastic-differential-equation approach to modeling of gene expression. Physical Review E, Vol. 95, no. 3, 2017, Article # 032418. DOI 10.1103/PhysRevE.95.032418

  70. Martirosyan A., De Martino A., Pagnani A., et al.: ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins. Scientific Reports, Vol. 7, 2017, Article # 43673. DOI 10.1038/srep43673

  71. Aranda-Diaz Andres, Mace Kieran, Zuleta Ignacio, et al.: Robust Synthetic Circuits for Two-Dimensional Control of Gene Expression in Yeast. ACS Synthetic Biology, Vol. 6, no. 3, 2017, pp. 545 – 554. DOI 10.1021/acssynbio.6b00251

  72. Porter J.R., Telford W.G., Batchelor E.: Single-cell Gene Expression Profiling Using FACS and qPCR with Internal Standards. JOVE - Journal Of Visualized Experiments, no. 120, 2017, Article # e55219. DOI 10.3791/55219

  73. Caveney P.M., Norred S.E., Chin C.W., et al.: Resource Sharing Controls Gene Expression Bursting. ACS Synthetic Biology, Vol. 6, no. 2, 2017, pp. 334 – 343. DOI 10.1021/acssynbio.6b00189

  74. Dal Co Alma, Lagomarsino Marco Cosentino, Caselle Michele, et al.: Stochastic timing in gene expression for simple regulatory strategies. Nucleic Acids Research, Vol. 45, no. 3, 2017, pp. 1069 – 1078. DOI 10.1093/nar/gkw1235

  75. Boross Gabor, Papp Balazs: No Evidence That Protein Noise-Induced Epigenetic Epistasis Constrains Gene Expression Evolution. Molecular Biology and Evolution, Vol. 34, no. 2, 2017, pp. 380 – 390. DOI 10.1093/molbev/msw236

  76. Maleki Farzaneh, Becskei Attila: An open-loop approach to calculate noise-induced transitions. Journal of Theoretical Biology, Vol. 415, 2017, pp. 145 – 157. DOI 10.1016/j.jtbi.2016.12.012

  77. Ghusinga Khem Raj, Dennehy John J., Singh Abhyudai: First-passage time approach to controlling noise in the timing of intracellular events. PNAS, Vol. 114, no. 4, 2017, pp. 693 – 698. DOI 10.1073/pnas.1609012114

  78. Tung Po-Yuan, Blischak John D., Hsiao Chiaowen Joyce, et al.: Batch effects and the effective design of single-cell gene expression studies. Scientific Reports, Vol. 7, 2017, Article # 39921. DOI 10.1038/srep39921

  79. Vazquez-Jimenez Aaron, Santillan Moises, Rodriguez-Gonzalez Jesus: How the extrinsic noise in gene expression can be controlled? 20th World Congress of the International-Federation-of-Automatic-Control (IFAC), IFAC PAPERSONLINE, Vol. 50, no. 1, 2017, pp. 15092 – 15096. DOI 10.1016/j.ifacol.2017.08.2236

  80. Tan He Li, Zhang Jia Jun: Noise tunability in a gene model with star-type promoter structure. Applicable Analysis, Vol. 96, no. 15, 2017, pp. 2493 – 2504. 10.1080/00036811.2016.1226286

  81. Holmes W.R., de Mochel Nabora S.R., Wang Qixuan, et al.: Gene Expression Noise Enhances Robust Organization of the Early Mammalian Blastocyst. PLoS Computational Biology, Vol. 13, no. 1, 2017, Article # e1005320. DOI 10.1371/journal.pcbi.1005320

  82. Wang Qixuan, Holmes W.R., Sosnik J., et al.: Cell Sorting and Noise-Induced Cell Plasticity Coordinate to Sharpen Boundaries between Gene Expression Domains. PLoS Computational Biology, Vol. 13, no. 1, 2017, Article # e1005307. DOI 10.1371/journal.pcbi.1005307

  83. Zachary Fox, Brian Munsky: Stochasticity or Noise in Biochemical Reactions. Submitted for inclusion in the textbook Quantitative Biology: Theory, Computational Methods and Examples of Models, edited by Brian Munsky, Lev S. Tsimring, and William S. Hlavacek, to be published by MIT Press. arXiv:1708.09264 [q-bio.QM], 2017.

  84. Bosia Carla, Sgrò Francesco, Conti Laura, et al.: RNAs competing for microRNAs mutually influence their fluctuations in a highly non-linear microRNA-dependent manner in single cells. Genome Biology, 2017, Vol. 18, no. 37, DOI 10.1186/s13059-017-1162-x

  85. Schmiedel Jorn, Marks Debora S., Lehner Ben, Bluthgen Nils: Noise control is a primary function of microRNAs and post-transcriptional regulation. BioRxiv Genetics, 2017. DOI 10.1101/168641

  86. Horowitz J.M., Kulkarni R.V.: Stochastic gene expression conditioned on large deviations. Physical Biology, Vol. 14, no. 3, 2017, 10 pages. DOI 10.1088/1478-3975/aa6d89

  87. Walker N., Nghe P., Tans S.J.: Generation and filtering of gene expression noise by the bacterial cell cycle. BMC Biology, Vol. 14, no. 11, 2016. DOI 10.1186/s12915-016-0231-z

  88. Bandiera L., Pasini A., Pasotti L., et al.: Experimental measurements and mathematical modeling of biological noise arising from transcriptional and translational regulation of basic synthetic gene circuits. J. of Theoretical Biology, Vol. 395, 2016, pp. 153 – 160. DOI 10.1016/j.jtbi.2016.02.004

  89. Jian Liu, François J.-M., Capp J.-P.: Use of noise in gene expression as an experimental parameter to test phenotypic effects. Yeast, Vol. 33, no. 6, 2016, pp. 209 – 216. DOI 10.1002/yea.3152

  90. Hinczewski M., Thirumalai D.: Noise Control in Gene Regulatory Networks with Negative Feedback. The Journal of Physical Chemistry B, Vol. 120, no. 26, 2016, pp. 6166 – 6177. DOI 10.1021/acs.jpcb.6b02093

  91. Anufrieva O., Sala A., Yli-Harja O., Kandhavelu M.: Real-time observation of bacterial gene expression noise. Nano Comm. Networks, Vol. 8, 2016, pp. 68 – 75. https://doi.org/10.1016/j.nancom.2016.03.001

  92. Erik van Nimwegen: Inferring intrinsic and extrinsic noise from a dual fluorescent reporter. BioRxiv, 2016 http://dx.doi.org/10.1101/049486

  93. Audrey Qiuyan Fu, Lior Pachter: Estimating intrinsic and extrinsic noise from single-cell gene expression measurements. Statistical Applications in Genetics and Molecular Biology, Vol. 15, no. 6, 2016, pp. 447 – 471. https://doi.org/10.1515/sagmb-2016-0002

  94. Rongfei Han, Guanqun Huang, Yejun Wang, et al.: Increased gene expression noise in human cancers is correlated with low p53 and immune activities as well as late stage cancer. Oncotarget, Vol. 7, no. 44, 2016, pp. 72011 – 72020. https://dx.doi.org/10.18632%2Foncotarget.12457

  95. Steinacher Arno, Bates Declan G., Akman Ozgur E., et al.: Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels. PLOS ONE, Vol. 11, no. 4, 2016, Article # e0153295. DOI 10.1371/journal.pone.0153295

  96. Bandiera L., Furini S., Giordano E.: Phenotypic Variability in Synthetic Biology Applications: Dealing with Noise in Microbial Gene Expression. Frontiers in Microbiology, Vol. 7, 2016, Article # 479. DOI 10.3389/fmicb.2016.00479

  97. Butzin N.C., Hochendoner P., Ogle C.T., et al.: Marching along to an Offbeat Drum: Entrainment of Synthetic Gene Oscillators by a Noisy Stimulus. ACS Synthetic Biology, Vol. 5, no. 2, 2016, pp. 146 – 153. DOI 10.1021/acssynbia.5b00127

  98. Villegas P., Ruiz-Franco J., Hidalgo J., et al.: Intrinsic noise and deviations from criticality in Boolean gene-regulatory networks. Scientific Reports, Vol. 6, 2016, Article # 34743. DOI 10.1038/srep34743

  99. Antoneli F., Ferreira R.C., Briones M.R.S.: A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks. Mathematical Biosciences, Vol. 276, 2016, pp. 82 – 100. DOI 10.1016/j.mbs.2016.03.008

  100. Smith S., Cianci C., Grima R.: Analytical approximations for spatial stochastic gene expression in single cells and tissues. Journal of the Royal Society Interface, Vol. 13, no. 118, 2016, Article # 20151051. DOI 10.1098/rsif.2015.1051

  101. J. Chris Pires, Gavin C. Conant: Robust Yet Fragile: Expression Noise, Protein Misfolding, and Gene Dosage in the Evolution of Genomes. Annual Review of Genetics, Vol. 50, 2016, pp. 113 – 131. https://doi.org/10.1146/annurev-genet-120215-035400

  102. Paulina Strzyz: Nuclear mRNA retention buffers expression noise. Nature Reviews Molecular Cell Biology, Vol. 17, no. 67, 2016. DOI 10.1038/nrm.2016.4

  103. Steensels J., Verstrepen K.J.: Stop that Noise and Turn Up the Antisense Transcription. Cell Reports, Vol. 15, no. 12, 2016, pp. 2575 – 2576. https://doi.org/10.1016/j.celrep.2016.06.012

  104. Dong-Yeon Cho, Hangnoh Lee, Wojtowicz D., Russell S., Oliver B., Przytycka T.M.: Interplay between copy number, dosage compensation and expression noise in Drosophila. BioRxiv beta, on line 2016. http://dx.doi.org/10.1101/041038

  105. Chubb J.R.: Gene Regulation: Stable Noise. Current Biology, Vol. 26, no. 2, 2016, pp. R61 – R64. https://doi.org/10.1016/j.cub.2015.12.002

  106. Ciechonska M., Grob A., Isalan M.: From noise to synthetic nucleoli: can synthetic biology achieve new insights? Integrative Biology, Vol. 8, no. 4, 2016, pp. 383 – 393. DOI 10.1039/c5ib00271k

  107. Merulla D., van der Meer J.R.: Regulatable and Modulable Background Expression Control in Prokaryotic Synthetic Circuits by Auxiliary Repressor Binding Sites. ACS Synthetic Biology, Vol. 5, no. 1, 2016, pp. 36 – 45. DOI 10.1021/acssynbio.5b00111

  108. Kapur Arnav, Marwah Kshitij, Alterovitz Gil: Gene expression prediction using low-rank matrix completion. BMC Bioinformatics, Vol. 17, 2016, Article # 243. DOI 10.1186/s12859-016-1106-6

  109. Veliz-Cuba Alan, Gupta Chinmaya, Bennett Matthew R., et al.: Effects of cell cycle noise on excitable gene circuits. Physical Biology, Vol. 13, no. 6, 2016, Article # 066007. DOI 10.1088/1478-3975/13/6/066007

  110. Veliz-Cuba Alan, Gupta Chinmaya, Bennett Matthew R., et al.: Effects of cell cycle noise on excitable gene circuits. Physical Biology, Vol. 13, no. 6, 2016, Article # 066007. DOI 10.1088/1478-3975/13/6/066007

  111. Potvin-Trottier L., Lord N.D., Vinnicombe G., et al.: Synchronous long-term oscillations in a synthetic gene circuit. Nature, Vol. 538, no. 7626, 2016, pp. 514 – 517. DOI 10.1038/nature19841

  112. Wu Fuke, Tian Tianhai, Rawlings J.B., et al.: Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations. Journal of Chemical Physics, Vol. 144, no. 17, 2016, Article # 174112. DOI 10.1063/1.4948407

  113. Gomez-Vela F., Barranco C.D., Diaz-Diaz N.: Incorporating biological knowledge for construction of fuzzy networks of gene associations. Applied Soft Computing, Vol. 42, issue C, 2016, pp. 144 – 155. DOI 10.1016/j.asoc.2016.01.014

  114. Wang Haohua, Yuan Zhanjiang, Liu Peijiang, et al.: Mechanisms of information decoding in a cascade system of gene expression. Physical Review E, Vol. 93, no. 5, 2016, Article # 052411. DOI 10.1103/PhysRevE.93.052411

  115. Roberts Elijah, Be'er Shay, Bohrer Chris, et al.: Dynamics of simple gene-network motifs subject to extrinsic fluctuations. Physical Review E, Vol. 92, no. 6, 2015, Article # 062717. DOI 10.1103/PhysRevE.92.062717

  116. T. Biancalani, M. Assaf: Genetic Toggle Switch in the Absence of Cooperative Binding: Exact Results. Physical Review Lett., Vol. 115, no. 20, 2015, Article # 208101. DOI 10.1103/PhysRevLett.115.208101

  117. Chowdhury Ahsan Raja, Chetty Madhu, Evans Rob: Stochastic S-system modeling of gene regulatory network. Cognitive Neurodynamics, Vol. 9, no. 5, 2015, pp. 535 – 547. DOI 10.1007/s11571-015-9346-0

  118. Oyarzun Diego A., Lugagne Jean-Baptiste, Stan Guy-Bart V.: Noise Propagation in Synthetic Gene Circuits for Metabolic Control. ACS Synthetic Biology, Vol. 4, no. 2, 2015, pp. 116 – 125. DOI 10.1021/sb400126a

  119. Leor S. Weinberger: A Minimal Fate-Selection Switch. Current Opinion in Cell Biology, Vol. 37, 2015, pp. 1 – 8. http://dx.doi.org/10.1016/j.ceb.2015.10.005

  120. Jiang Nan, Liu Xiaoyang, Yu Wenwu, et al.: Finite-time stochastic synchronization of genetic regulatory networks. Neurocomputing, Vol. 167, 2015, pp. 314 – 321. DOI 10.1016/j.neucom.2015.04.064

  121. Chavali A.K., Wong V.C., Miller-Jensen K.: Distinct promoter activation mechanisms modulate noise-driven HIV gene expression. Scientific Reports, Vol. 5, 2015, Article # 17661. DOI 10.1038/srep17661

  122. Cepeda-Humerez S.A., Rieckh G., Tkacik G.: Stochastic Proofreading Mechanism Alleviates Crosstalk in Transcriptional Regulation. Phys. Rev. Lett., Vol. 115, no. 24, 2015, Article # 248101. DOI 10.1103/PhysRevLett.115.248101

  123. Kim J.K., Kolodziejczyk A.A., Ilicic T., Teichmann S.A., Marioni J.C.: Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nature Communications, Vol. 6, 2015, Article # 8687. DOI 10.1038/ncomms9687

  124. Kolodziejczyk A.A., Kim J.K., Svensson V., Marioni J.C., Teichmann S.A.: The Technology and Biology of Single-Cell RNA Sequencing. Molecular Cell, Vol. 58, no. 4, 2015, pp. 610 – 620. http://dx.doi.org/10.1016/j.molcel.2015.04.005

  125. Bo Ding, Lina Zheng, Yun Zhu, Nan Li, Haiyang Jia, Rizi Ai, Andre Wildberg, Wei Wang: Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics, Vol. 31, no. 13, 2015, pp. 2225 – 2227. https://doi.org/10.1093/bioinformatics/btv122

  126. Ryan A. Kellogg, Savaş Tay: Noise Facilitates Transcriptional Control under Dynamic Inputs. Cell, Vol. 160, no. 3, 2015, pp. 381 – 392. https://doi.org/10.1016/j.cell.2015.01.013

  127. Kempe H., Schwabe A., Crémazy F., Verschure P.J., Bruggeman F.J.: The volumes and transcript counts of single cells reveal concentration homeostasis and capture biological noise. Molecular Biology of the Cell (MboC), Vol. 26, no. 4, 2015, pp. 797 – 804. DOI 10.1091/mbc.E14-08-1296

  128. Shahrezaei V., Marguerat S.: Connecting growth with gene expression: of noise and numbers. Current Opinion in Microbiology, Vol. 25, 2015, pp. 127 – 135. https://doi.org/10.1016/j.mib.2015.05.012

  129. Sanjay Tyagi: Tuning noise in gene expression. Molecular Systems Biology, Vol. 11, no. 5, 2015, pp. 805 – 807. DOI 10.15252/msb.20156210

  130. Tse M.J., Chu B.K., Roy Mhuaa, Read E.L.: DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks. Biophysical Journal, Vol. 100, no. 8, 2015, pp. 1746 – 1757. https://doi.org/10.1016/j.bpj.2015.08.035

  131. Janes K.A.: Cell-to-Cell Transcript Variability: Seeing Signal in the Noise. Cell, Vol. 163, no. 7, 2015, pp. 1566 – 1568. https://doi.org/10.1016/j.cell.2015.12.010

  132. Rui Li, Liufang Xu, Hualin Shi: Strategy of tuning gene expression ratio in prokaryotic cell from perspective of noise and correlation. Journal of Theoretical Biology, Vol. 365, 2015, pp. 377 – 389. http://dx.doi.org/10.1016/j.jtbi.2014.11.002

  133. Xue Lei, Wei Tian, Hongyuan Zhu, Tianqi Chen, Ping Ao: Biological Sources of Intrinsic and Extrinsic Noise in cI Expression of Lysogenic Phage Lambda. Scientific Reports, Vol. 5, 2015, Article # 13597. https://dx.doi.org/10.1038%2Fsrep13597

  134. Petrosyan K.G., Hu Chin-Kun: Fluctuation effects in gene regulation by microRNAs and correlations between gene and pseudogene mRNAs in the control of cancer. Journal of Statistical Mechanics - Theory & Experiment, 2015, Article # P07019. DOI 10.1088/1742-5468/2015/07/P07019

  135. Wolf L., Silander O.K., van Nimwegen E.: Expression noise facilitates the evolution of gene regulation. eLife, Vol. 4, 2015, Article # e05856. DOI 10.7554/eLife.05856

  136. Feigelman J., Popovic N., Marr C.: A case study on the use of scale separation-based analytical propagators for parameter inference in models of stochastic gene regulation. Journal of Coupled Systems and Multiscale Dynamics, Vol. 3, no. 2, Special Issue: SI, 2015, pp. 164 – 173. DOI 10.1166/jcsmd.2015.1074

  137. Lalaouna D., Carrier M.-C., Semsey S., Brouard J.-S., Jing Wang, Wade J.T., Masse E.: A 3′ External Transcribed Spacer in a tRNA Transcript Acts as a Sponge for Small RNAs to Prevent Transcriptional Noise. Molecular Cell, Vol. 58, no. 3, 2015, pp. 389 – 390. https://doi.org/10.1016/j.molcel.2015.03.013

  138. Keren Leeat, van Dijk D., Weingarten-Gabbay S., Davidi D., Jona G., Weinberger A., Milo R., Segal E.: Noise in gene expression is coupled to growth rate. Genome Research, Vol. 25, 2015, pp. 1893 – 1902. http://genome.cshlp.org/lookup/doi/10.1101/gr.191635.115

  139. Brock A., Krause S., Ingber D.E.: Control of cancer formation by intrinsic genetic noise and microenvironmental cues. Nature Reviews Cancer, Vol. 15, no. 8, 2015, pp. 499 – 509. DOI 10.1038/nrc3959

  140. Jian Liu, Martin-Yken H., Bigey F., Dequin S., François J.-M., Capp J.-P.: Natural Yeast Promoter Variants Reveal Epistasis in the Generation of Transcriptional-Mediated Noise and Its Potential Benefit in Stressful Conditions. Genome Biology & Evolution, Vol. 7, no. 4, 2015, pp. 969 – 984. https://doi.org/10.1093/gbe/evv047

  141. Ochab-Marcinek A., Tabaka M.: Transcriptional leakage versus noise: A simple mechanism of conversion between binary and graded response in autoregulated genes. Physical Rev. E, Vol. 91, 2015, Article # 012704. https://doi.org/10.1103/PhysRevE.91.012704

  142. Pei Wang, Jinhu Lu, Xinghuo Yu: Colored noise induced bistable switch in the genetic toggle switch systems. IEEE/ACM Trans on Computational Biology and Bioinformatics (TCBB), Vol. 12, no. 3, 2015, pp. 579 – 589. DOI 10.1109/TCBB.2014.2368982

  143. Mc Mahon S.S., Lenive O., Filippi S., Stumpf M.P.H.: Information processing by simple molecular motifs and susceptibility to noise. Journal of the Royal Society Interface, Vol. 12, no. 110, 2015. DOI 10.1098/rsif.2015.0597

  144. Mandal M., Mondal J., Mukhopadhyay A.: A PSO-Based Approach for Pathway Marker Identification From Gene Expression Data. IEEE Trans on Nano Bioscience, Vol. 14, no. 6, 2015, pp. 591 – 597. DOI 10.1109/TNB.2015.2425471

  145. Waldron D.: Environmental noise control. Nature Reviews Genetics, Vol. 16, no. 11, 2015, pp. 624 – 625. DOI 10.1038/nrg4021

  146. Kumar Niraj, Singh Abhyudai, Kulkarni Rahul V.: Transcriptional Bursting in Gene Expression: Analytical Results for General Stochastic Models. PLoS Computational Biology, Vol. 11, no. 10, 2015, Article # e1004292. DOI 10.1371/journal.pcbi.1004292

  147. Schmiedel J.M., Klemm S.L., Zheng Y., Sahay A., Bluthgen N., Marks D.S., van Oudenaarden A.: Gene expression. MicroRNA control of protein expression noise. Science, 2015, Vol. 348, pp. 128 – 132. DOI 10.1126/science.aaa1738

  148. Kazuya Nishimura, Saburo Tsuru, Hiroaki Suzuki, Tetsuya Yomo: Stochasticity in Gene Expression in a Cell-Sized Compartment. ACS Synthetic Biology, Vol. 4, no. 5, 2015, pp. 566 – 576. DOI 10.1021/sb500249g

  149. Kyung Hyuk Kim, Kiri Choi, Bartley B., Sauro H.M.: Controlling E. coli Gene Expression Noise. IEEE Trans on Biomedical Circuits & Systems, Vol. 9, no. 4, 2015, pp. 497 – 504. DOI 10.1109/TBCAS.2015.2461135

  150. Soltani M., Vargas-Garcia C.A., Singh A.: Conditional Moment Closure Schemes for Studying Stochastic Dynamics of Genetic Circuits. IEEE Trans on Biomedical Circuits & Systems, Vol. 9, no. 4, 2015, pp. 518 – 526. DOI 10.1109/TBCAS.2015.2453158

  151. Kumar Niraj, Platini Thierry, Kulkarni Rahul V.: Exact Distributions for Stochastic Gene Expression Models with Bursting and Feedback. Physical Review Lett., Vol. 113, no. 26, 2014, Article # 268105. DOI 10.1103/PhysRevLett.113.268105

  152. Paijmans J., ten Wolde P.R.: Lower bound on the precision of transcriptional regulation and why facilitated diffusion can reduce noise in gene expression. Physical Review E, Vol. 90, no. 3, 2014, Article # 032708. DOI 10.1103/PhysRevE.90.032708

  153. Sandberg Rickard: Entering the era of single-cell transcriptomics in biology and medicine. Nature Methods, Vol. 11, no. 1, 2014, pp. 22 – 24. DOI 10.1038/nmeth.2764

  154. Ariel Amir: Cell size regulation in bacteria. Physical Rev. Lett., Vol. 112, no. 20, 2014, Article # 208102. https://doi.org/10.1103/PhysRevLett.112.208102

  155. Anderson M.Z., Gerstein A.C., Wigen L., Baller J.A., Berman J.: Silencing Is Noisy: Population and Cell Level Noise in Telomere-Adjacent Genes Is Dependent on Telomere Position and Sir2. PLOS Genetics, Vol. 10, no. 7, 2014, Article # e1004436. https://doi.org/10.1371/journal.pgen.1004436

  156. Roy D. Dar, Hosmane N.N., Arkin M.R., Siliciano R.F., Weinberger L.S.: Screening for noise in gene expression identifies drug synergies. Science, Vol. 344, no. 6190, 2014, pp. 1392 – 1396. DOI 10.1126/science.1250220

  157. Jones D.L., Brewster R.C., Phillips Rob: Promoter architecture dictates cell-to-cell variability in gene expression. Science, Vol. 346, no. 6216, 2014, pp. 1533 – 1536. https://dx.doi.org/10.1126%2Fscience.1255301

  158. Aaron M. Streetsa, Xiannian Zhanga, Chen Caoa, Yuhong Panga, Xinglong Wua, Liang Xionga, Lu Yanga, Yusi Fua, Liang Zhao, Fuchou Tanga, Yanyi Huang: Microfluidic single-cell whole-transcriptome sequencing. PNAS, Vol. 111, no. 19, 2014, pp. 7048 – 7053. DOI 10.1073/pnas.1402030111

  159. Guimaraes J.C., Rocha M., Arkin A.P.: Transcript level and sequence determinants of protein abundance and noise in Escherichia coli. Nucleic Acids Research, Vol. 42, no. 8, 2014, pp. 4791 – 4799. https://doi.org/10.1093/nar/gku126

  160. Marinov G.K., Williams B.A., McCue Ken, Schroth G.P., Gertz J., Myers R.M., Wold B.J.: From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing. Genome Research, Vol. 24, 2014, pp. 496 – 510. DOI 10.1101/gr.161034.113

  161. Macaulay I.C., Voet T.: Single Cell Genomics: Advances and Future Perspectives. PLOS Genetics, Vol. 10, no. 1, 2014, Article # e1004126. https://doi.org/10.1371/journal.pgen.1004126

  162. Singh A.: Transient Changes in Intercellular Protein Variability Identify Sources of Noise in Gene Expression. Biophysical Journal, Vol. 107, no. 9, 2014, pp. 2214 – 2220. http://dx.doi.org/10.1016/j.bpj.2014.09.017

  163. Alam S., Lai E.M.-K., Young J., Hasan S.M.R.: Rapid electronic prediction of gene expression regulation in bacterial cells. Electronics Lett., Vol. 50, no. 22, 2014, pp. 1566 – 1568. DOI 10.1049/el.2014.2144

  164. Peican Zhu, Jie Han: Stochastic Multiple-Valued Gene Networks. IEEE Trans on Biomedical Circuits & Systems, Vol. 8, no. 1, 2014, pp. 42 – 53. DOI 10.1109/TBCAS.2013.2291398

  165. Zeng Chunhua, Yang Tao, Han Qinglin, et al.: Noises-induced toggle switch and stability in a gene regulation network. Int. J. of Modern Physics B, Vol. 28, no. 31, 2014, Article # 1450223. DOI 10.1142/S0217979214502233

  166. Yang Tao, Zhang Chun, Zeng Chunhua, et al.: Delay and noise induced regime shift and enhanced stability in gene expression dynamics. Journal of Statistical Mechanics - Theory & Experiment, Vol. 2014, no. 12, 2014, Article # P12015. DOI 10.1088/1742-5468/2014/12/P12015

  167. Wang J., Lefranc M., Thommen Q.: Stochastic oscillations induced by intrinsic fluctuations in a self repressing gene. Biophysical Journal, Vol. 107, no. 10, 2014, pp. 2403 – 2416. DOI 10.1016/j.bpj.2014.09.042

  168. Gomez D., Marathe R., Bierbaum V., Klumpp S.: Modeling stochastic gene expression in growing cells. Journal of theoretical biology, Vol. 348, 2014, pp. 1 – 11. DOI 10.1016/j.jtbi.2014.01.017

  169. Arbel-Goren R., Tal A., Stavans J.: Phenotypic noise: effects of post-transcriptional regulatory processes affecting mRNA. Wiley Interdisciplinary Reviews-RNA, Vol. 5, no. 2, 2014, pp. 197 – 207. DOI 10.1002/wrna.1209

  170. Rieckh G., Tkacik G.: Noise and Information Transmission in Promoters with Multiple Internal States. Biophysical Journal, Vol. 106, no. 5, 2014, pp. 1194 – 1204. https://doi.org/10.1016/j.bpj.2014.01.014

  171. Dey G., Gupta G.D., Ramalingam B., Sathe M., Mayor S., Thattai M.: Exploiting Cell-To-Cell Variability To Detect Cellular Perturbations. PLoS One, Vol. 9, no. 3, 2014, Article # e90540. DOI 10.1371/journal.pone.0090540

  172. Bajikar S.S., Fuchs C., Roller A., Theis F., Janes K. A.: Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles. Proc. of the National Acad. of Sciences of the USA, Vol. 111, no. 5, 2014, pp. E626 – E635. DOI 10.1073/pnas.1311647111

  173. Maity A.K., Bandyopadhyay A., Chaudhury P., Banik S.K.: Role of functionality in two-component signal transduction: A stochastic study. Physical Review E, Vol. 89, no. 3, 2014, Article # 032713. DOI 10.1103/PhysRevE.89.032713

  174. Yvinec R., Zhuge Changjing, Lei Jinzhi, Mackey M.C.: Adiabatic reduction of a model of stochastic gene expression with jump Markov process. Journal of Mathematical Biology, Vol. 68, no. 5, 2014, pp. 1051 – 1070. DOI 10.1007/s00285-013-0661-y

  175. Bhattacharyya B., Kalay Z.: Distribution of population-averaged observables in stochastic gene expression. Physical Review E, Vol. 89, no. 1, 2014, Article # UNSP 012715. DOI 10.1103/PhysRevE.89.012715

  176. Zhang Jiajun, Zhou Tianshou: Promoter-mediated Transcriptional Dynamics. Biophysical Journal, Vol. 106, no. 2, 2014, pp. 479 – 488. DOI 10.1016/j.bpj.2013.12.011

  177. ten Wolde P.R., Mugler A.: Importance of crowding in signaling, genetic, and metabolic networks. Int. Rev. of Cell and Molecular Biology, Vol. 307, 2014, pp. 419 – 442. DOI 10.1016/B978-0-12-800046-5.00012-6

  178. N. Vardi, S. Levy, M. Assaf, Michael Carmi, N. Barkai: Budding Yeast Escape Commitment to the Phosphate Starvation Program Using Gene Expression Noise. Current Biology, Vol. 23, no. 20, 2013, pp. 2051 – 2057. DOI 10.1016/j.cub.2013.08.043

  179. T. Earnest, E. Roberts, M. Assaf, K. Dahmen, Z. Luthey-Schulten: DNA looping increases range of bistability in a stochastic model of the lac genetic switch. Physical Biology, Vol. 10, no. 2, 2013, Article # 026002. DOI 10.1088/1478-3975/10/2/026002

  180. Monteoliva D., McCarthy C.B., Diambra L.: Noise Minimisation in Gene Expression Switches. PLoS One, Vol. 8, no. 12, 2013, Article # e84020. DOI 10.1371/journal.pone.0084020

  181. Boettiger A.N.: Analytic Approaches to Stochastic Gene Expression in Multicellular Systems. Biophysical Journal, Vol. 105, no. 12, 2013, pp. 2629 – 2640. DOI 10.1016/j.bpj.2013.10.033

  182. Sanchez A., Golding I.: Genetic Determinants and Cellular Constraints in Noisy Gene Expression. Science, Vol. 342, no. 6163, 2013, pp. 1188 – 1193. DOI 10.1126/science.1242975

  183. Innocentini G.D.P., Forger M., Ramos A.F., Radulescu O., Hornos J.E.M.: Multimodality and Flexibility of Stochastic Gene Expression. Bulletin of Mathematical Biology, Vol. 75, no. 12, 2013, pp. 2600 – 2630. DOI 10.1007/s11538-013-9909-3

  184. Hansen A.S., O'Shea E.K.: Promoter decoding of transcription factor dynamics involves a trade-off between noise and control of gene expression. Molecular Systems Biology, Vol. 9, 2013, Article # 704. DOI 10.1038/msb.2013.56

  185. Thomas P., Matuschek H., Grima R.: How reliable is the linear noise approximation of gene regulatory networks? BMC Genomics, Vol. 14, S4, 2013, Article # S5. DOI 10.1186/1471-2164-14-S4-S5

  186. Maity A.K., Bandyopadhyay A., Chattopadhyay S., Chaudhuri J.R., Metzler R., Chaudhury P., Banik S.K.: Quantification of noise in bifunctionality-induced post-translational modification. Physical Review E, Vol. 88, no. 3, 2013, Article # 032716. DOI 10.1103/PhysRevE.88.032716

  187. Lillacci G., Khammash M.: The signal within the noise: efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations. Bioinformatics, Vol. 29, no. 18, 2013, pp. 2311 – 2319. DOI 10.1093/bioinformatics/btt380

  188. Little S.C., Tikhonov M., Gregor T.: Precise Developmental Gene Expression Arises from Globally Stochastic Transcriptional Activity. CELL, Vol. 154, no. 4, 2013, pp. 789 – 800. DOI 10.1016/j.cell.2013.07.025

  189. Assaf M., Roberts E., Luthey-Schulten Z., Goldenfeld N.: Extrinsic Noise Driven Phenotype Switching in a Self-Regulating Gene. Physical Review Lett., Vol. 111, no. 5, 2013, Article # 058102. DOI 10.1103/PhysRevLett.111.058102

  190. Vilar J.M.G., Saiz L.: Systems Biophysics of Gene Expression. Biophysical Journal, Vol. 104, no. 12, 2013, pp. 2574 – 2585. DOI 10.1016/j.bpj.2013.04.032

  191. Hebenstreit D.: Are gene loops the cause of transcriptional noise? Trends in Genetics, Vol. 29, no. 6, 2013, pp. 333 – 338. DOI 10.1016/j.tig.2013.04.001

  192. Pendar H., Platini T., Kulkarni R.V.: Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes. Physical Review E, Vol. 87, no. 4, 2013, Article # 042720. DOI 10.1103/PhysRevE.87.042720

  193. Espinar L., Dies M., Cagatay T., Sueel G.M., Garcia-Ojalvo J.: Circuit-level input integration in bacterial gene regulation. Proc. of the National Acad. of Sciences of the USA, Vol. 110, no. 17, 2013, pp. 7091 – 7096. DOI 10.1073/pnas.1216091110

  194. Nishino Ryota, Sakaue Takahiro, Nakanishi Hiizu: Transcription Fluctuation Effects on Biochemical Oscillations. PLoS One, Vol. 8, no. 4, 2013, Article # e60938. DOI 10.1371/journal.pone.0060938

  195. Carey L.B., van Dijk D., Sloot P.M.A., Kaandorp J.A., Segal E.: Promoter Sequence Determines the Relationship between Expression Level and Noise. PLoS Biology, Vol. 11, no. 4, 2013, Article # e1001528. DOI 10.1371/journal.pbio.1001528

  196. Hormoz S.: Cross Talk and Interference Enhance Information Capacity of a Signaling Pathway. Biophysical Journal, Vol. 104, no. 5, 2013, pp. 1170 – 1180. DOI 10.1016/j.bpj.2013.01.033

  197. Xu Yong, Feng Jing, Li JuanJuan, Zhang Huiqing: Levy noise induced switch in the gene transcriptional regulatory system. Chaos, Vol. 23, no. 1, 2013, Article # 013110. DOI 10.1063/1.4775758

  198. Neuert G., Munsky B., Tan Rui Zhen, Teytelman L., Khammash M., van Oudenaarden A.: Systematic Identification of Signal-Activated Stochastic Gene Regulation. Science, Vol. 339, no. 6119, 2013, pp. 584 – 587. DOI 10.1126/science.1231456

  199. Jaruszewicz J., Zuk P.J., Lipniacki T.: Type of noise defines global attractors in bistable molecular regulatory systems. Journal of Theoretical Biology, Vol. 317, 2013, pp. 140 – 151. DOI 10.1016/j.jtbi.2012.10.004

  200. Yan Ching-Cher Sanders, Hsu Chao-Ping: The fluctuation-dissipation theorem for stochastic kinetics-Implications on genetic regulations. Journal of Chemical Physics, Vol. 139, no. 22, 2013, Article # 224109. DOI 10.1063/1.4837235

  201. Choubey S., Kondev J., Sanchez A.: Regulation of noise in gene expression. Annual Review of Biophysics, Vol. 42, no. 1, 2013, pp. 469 – 491. DOI 10.1146/annurev-biophys-083012-130401

  202. Padovan-Merhar O., Raj A.: Using variability in gene expression as a tool for studying gene regulation. Wiley Interdisciplinary Reviews-Systems Biology and Medicine,  Vol. 5, no. 6, 2013, pp. 751 – 759. DOI 10.1002/wsbm.1243

  203. Flores K.B.: A structured population modeling framework for quantifying and predicting gene expression noise in flow cytometry data. Applied Mathematical Modelling, Vol. 26, no. 7, 2013, pp. 794 – 798. DOI 10.1016/j.aml.2013.03.003

  204. Wu Jincheng, Tzanakakis E.S.: Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches. Biotechnology Advances, Vol. 31, no. 7, SI, 2013, pp. 1047 – 1062. DOI 10.1016/j.biotechadv.2013.09.001

  205. Zhang Hui, Chen Yueling, Chen Yong: Noise Propagation in Gene Regulation Networks Involving Interlinked Positive and Negative Feedback Loops. PLoS One, Vol. 7, no. 12, 2012, Article # e51840. DOI 10.1371/journal.pone.0051840

  206. Venkata D.N., Vidya A., Sagar P., Kumar G., Viswanathan G.A.: Noise Propagation in Two-Step Series MAPK Cascade. PLOS One, Vol. 7, no. 5, 2012, Article # e35958. DOI 10.1371/journal.pone.0035958

  207. R. Salari, D. Wojtowicz, Jie Zheng, D. Levens, Y. Pilpel,T. M. Przytycka: Teasing Apart Translational and Transcriptional Components of Stochastic Variations in Eukaryotic Gene Expression. PLoS Computational Biology, Vol. 8, no. 8, 2012, Article # e1002644. DOI 10.1371/journal.pcbi.1002644

  208. Grima R., Schmidt D., Newman T.J. : Steady-state fluctuations of a genetic feedback loop: an exact solution. Journal of Chemical Physics, Vol. 137, 2012, pp. 035104.  DOI 10.1063/1.4736721

  209. Zhu Hongyuan, Chen Tianqi, Lei Xue, Tian Wei, Cao Youfang, Ao Ping: Understand the noise of CI expression in phage λ lysogen. 31st Chinese Control Conference (CCC), 2012, pp. 7432 – 7436. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6391256&isnumber=6389889

  210. Yong Zhang, Peng Li, Huang G.M.: Quantifying Dynamic Stability of Genetic Memory Circuits. IEEE/ACM Trans. on Computational Biology and Bioinformatics, Vol. 9, no. 3, 2012, pp. 871 – 884. DOI 10.1109/TCBB.2011.132

  211. Filkov V.: Invited: Identifying mutations from TILLING experiments. IEEE 2nd Int. Conf on Computational Advances in Bio and Medical Sciences (ICCABS), pp.1, 2012 DOI 10.1109/ICCABS.2012.6182620

  212. Kyung H. Kim, H. M. Sauro : Adjusting Phenotypes by Noise Control. PLOS Computational Biology, Vol. 8, no. 1, 2012. DOI 10.1371/journal.pcbi.1002344

  213. Gutierrez P.S., Monteoliva D., Diambra L.: Cooperative Binding of Transcriptional Factors Promotes Bimodal Gene Expression Response. PLoS One, Vol. 7, no. 9, 2012, Article # e44812. DOI 10.1371/journal.pone.0044812

  214. Hai Ling, Zhangqing Zhu, Chunlin Chen: Dynamics of genetic regulatory networks with delays. IEEE Int. Conf. on Networking, Sensing and Control (ICNSC), 2012, pp. 310 – 315. DOI 10.1109/ICNSC.2012.6204936

  215. M. Assaf, E. Roberts, Z. Luthey-Schulten: Determining the stability of genetic switches: explicitly accounting for mRNA noise. Physical Review Lett., Vol. 106, no. 24, 2011, Article # 248102. DOI 10.1103/PhysRevLett.106.248102

  216. Nacher J. C, Ryabov V.B.: Nonlinear response of gene expression to chemical perturbations: A noise-detector model and its predictions. BioSystems, 2011. DOI 10.1016/j.biosystems.2011.08.002

  217. Vladimir P. Zhdanov : Periodic perturbation of the bistable kinetics of gene expression. Physica A : Statistical Mecanics and its Applications, 2011, Vol. 390, no. 1, pp. 57 – 64. DOI 10.1016/j.physa2010.03.036

  218. Holloway D.M., Spirov A.V.: Gene expression noise in embryonic spatial patterning: Reliable formation of the head-to-tail axis in the fruit fly. 21st Int. Conf. on Noise and Fluctuations (ICNF), 12-16 June 2011, pp 495 – 498. DOI 10.1109/ICNF.2011.5994379

  219. Singh A. Genetic negative feedback circuits for filtering stochasticity in gene expression. IEEE Conf. on Decision and Control and European Control Conference (CDC-ECC), 2011, pp. 4366 – 4370. DOI 10.1109/CDC.2011.6160746

  220. Singh A.: Negative Feedback Through mRNA Provides the Best Control of Gene-Expression Noise. IEEE Trans on NanoBioscience, Vol. 10, no. 3, 2011, pp. 194 – 200. DOI 10.1109/TNB.2011.2168826

  221. Pan Wei, Wang Zidong, Hu Jun, Gao Huijun: Robust stability of genetic regulatory networks with interval time-varying delays under intrinsic and extrinsic noises. 29th Chinese Control Conference (CCC), 2010, pp. 6245 – 6250. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5573006&isnumber=5571954

  222. R. Guantes, J. Estrada, J. F. Poyatos: Trade-offs and Noise Tolerance in Signal Detection by Genetic Circuits. PLoS ONE, Vol. 5, no 8, 2010, e12314. doi:10.1371/journal.pone.0012314. http://www.uam.es/personal_pdi/icmnc/rguantes/papers/PLoS1_javi.pdf

  223. Nir Friedman, Long Cai, X. Sunney Xie: Stochasticity in Gene Expression as Observed by Single-molecule Experiments in Live Cells. Israel Journal of Chemistry, Vol. 49, no 3-4, 2010, pp 333 – 342. DOI: 10.1560/IJC.49.3

  224. D. Neems, S. T. Kosak: Turning down the volume on transcriptional noise. Nature Cell Biology, Vol. 12, 2010, pp 929 – 931. DOI 10.1038/ncb1010-929

  225. Eldar A, Elowitz M.B.: Functional roles for noise in genetic circuits. Nature, Vol. 467, no. 7312, 2010, pp. 167 – 173. DOI 10.1038/nature09326

  226. Jia Tao, Kulkarni Rahul V.: Post-Transcriptional Regulation of Noise in Protein Distributions during Gene Expression. Physical Review Lett., Vol. 105, no. 1, 2010,  Article # 018101. DOI: 10.1103/PhysRevLett.105.018101

  227. Jinzhi Lei: Stochasticity in single gene expression with both intrinsic noise and fluctuation in kinetic parameters. Journal of Theoretical Biology, Vol. 256, no 4, 2009, pp 485 – 492. DOI 10.1016/j.jtbi.2008.10.028

  228. Zhang Z., W. Qian, J. Zhang: Positive selection for elevated gene expression noise in yeast. Molecular Systems Biololgy, Vol. 5, no. 1, 2009, Article # 299. DOI 10.1038/msb.2009.58

  229. Gutierrez P.S., Monteoliva D., Diambra L.: Role of Cooperative Binding on Noise Expression. Physical Review  E, Vol. 80, no. 7, 2009, Article # 011914. DOI 10.1103/PhysRevE.80.011914

  230. A. Singh, J.P. Hespanha: Optimal Feedback Strength for Noise Suppression in Autoregulatory Gene Networks. Biophysical Journal, Vol 96, no 10, 2009, pp 4013 – 4023. DOI 10.1016/j.bpj.2009.02.064

  231. Guoliang Wei, Zidong Wang, James Lam, Karl Fraser, Ganti Prasada Rao, Xiaohui Liu: Robust filtering for stochastic genetic regulatory networks with time-varying delay. Mathematical Biosciences, Vol. 220, no 2, 2009, pp 73 – 80. DOI:10.1016/j.mbs.2009.04.002

  232. Chen Bor-Sen, Yu-Te Chang, Yu-Chao Wang: Robust H-Stabilization Design in Gene Networks Under Stochastic Molecular Noises: Fuzzy-Interpolation Approach. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 38, no. 1, 2008, pp. 25 – 42. DOI 10.1109/TSMCB.2007.906975

  233. Saiz L., Vilar J.M.G.: Protein-protein/DNA interaction networks: versatile macromolecular structures for the control of gene expression. IET Systems Biology, Vol. 2, no. 5, 2008, pp. 247 – 255. DOI 10.1049/iet-syb:20080091

  234. Ben Lehner: Selection to minimise noise in living systems and its implications for the evolution of gene expression. Molecular Systems Biology, Vol. 4; Article number 170, 2008. DOI 10.1038/msb.2008.11

  235. C. D. Cox, J. M. McCollum, M. S. Allen, R. D. Dar, M. L. Simpson: Using noise to probe and characterize gene circuits. PNAS, 2008. http://www.pnas.org/content/105/31/10809.full.pdf

  236. Zidong Wang, Fuwen Yang, Ho D.W.C., Swift S., Tucker A., Xiaohui Liu: Stochastic Dynamic Modeling of Short Gene Expression Time-Series Data. IEEE Trans on NanoBioscience, Vol. 7, no 1, 2008, pp 44 – 55. DOI 10.1109/TNB.2008.2000149

  237. J. M. Pedraza, J. Paulsson: Effects of Molecular Memory and Bursting on Fluctuations in Gene Expression. Science, Vol. 319, no. 5861, 2008, pp. 339 – 343. DOI 10.1126/science.1144331 http://www.sciencemag.org/content/319/5861/339.abstract#aff-1

  238. J. J. Tabor, T. S. Bayer, Z. B. Simpson, M. Levy, A. D. Ellington: Engineering stochasticity in gene expression. Molecular Biosystems, Vol. 4, no 7, 2008, pp 754 – 761. DOI 10.1039/B801245H http://www.ncbi.nlm.nih.gov/pubmed/18563250

  239. Lestas I., Paulsson J., Ross N.E., Vinnicombe G.: Noise in Gene Regulatory Networks. IEEE Trans on Automatic Control, Vol. 53, special issue, 2008, pp 189 – 200. DOI 10.1109/TAC.2007.911347 

  240. Wang Junwei, Zhou Tianshou: Environmental noise-induced synchronized switching between gene states. 27th Chinese Control Conference, 2008, pp 399 – 403. DOI 10.1109/CHICC.2008.4605179

  241. B.S. Chen, W.S. Wu: Robust filtering circuit design for stochastic gene networks under intrinsic and extrinsic molecular noises. Mathematical Biosciences, Vol. 211, no. 2, 2008, pp. 342 – 355. DOI 10.1016/j.mbs.2007.11.002

  242. B. B. Kaufmann, A. Van Oudenaarden: Stochastic gene expression: from single molecules to the proteome. Current Opinion in Genetics & Development, Vol. 17, no 2, 2007, pp 107 – 112. doi:10.1016/j.gde.2007.02.007

  243. N. N. Batada, L. D. Hurst: Evolution of chromosome organization driven by selection for reduced gene expression noise. Nature Genetics, Vol 39, no 8, 2007, pp 945 – 949. DOI:10.1038/ng2071

  244. K. Kaneko: Evolution of robustness to noise and mutation in gene expression dynamics. PloS ONE, May 2007, no 5 | e434, pp 1 – 8. DOI 10.1371/journal.pone.0000434 http://chaos.c.u-tokyo.ac.jp/papers/bio1/kk2007robust.pdf

  245. N. Maheshri, Erin K. O’Shea: Living with Noisy Genes: How Cells Function Reliably with Inherent Variability in Gene Expression. Annual Review of Biophysics and Biomolecular Structure, Vol. 36, June 2007, pp 413 – 434. DOI: 10.1146/annurev.biophys.36.040306.132705

  246. S. Iyer-Biswas, F. Hayot, C. Jayaprakash: Transcriptional pulsing and consequent stochasticity in gene expression. Arxiv preprint, 2007. http://arxiv.org/PS_cache/arxiv/pdf/0711/0711.1141v1.pdf

  247. A. Bar-Even, J. Paulsson, N. Maheshri, M. Carmi, E. O'Shea, Y. Pilpel, N. Barka: Noise in protein expression scales with natural protein abundance. Nature Genetics, Vol 38, 2006, pp 636 – 643. DOI 10.1038/ng1807

  248. Longo D., J. Hasty: Imaging gene expression: tiny signals make a big noise. Nature Chemical Biology, Vol 2, no 4, 2006, pp 181 – 182. DOI 10.1038/nchembio0406-181

  249. M. Skipper: Synthetic biology: Building up a picture of gene regulation. Nature Reviews Genetics, Vol 7, 2006, pp 242 – 243. DOI 10.1038/nrg1844

  250. J. S. Mattick: The underworld of RNA. Nature Genetics, Vol 38, no 4, 2006, pp 393 – 393. ISSN 1061-4036

  251. C. Adami: Digital genetics: unravelling the genetic basis of evolution. Nature Reviews Genetics Vol. 7, 2006, pp 109 – 118. DOI 10.1038/nrg1771

  252. A. Martinez-Arias, P. Hayward: Filtering transcriptional noise during development: concepts and mechanisms. Nature Reviews Genetics, Vol 7, no 1, 2006, pp 34 – 44. PubMed 16369570

  253. D. W. Austin, M. S. Allen, J. M. McCollum, R. D. Dar, J. R. Wilgus, G. S. Sayler, N. F. Samatova, C. D. Cox, M. L. Simpson: Gene network shaping of inherent noise spectra. Nature, Vol 439, Letter, 2006, pp 608 – 611. DOI 10.1038/nature04194

  254. Baetz K, Kaern M.: Predictable trends in protein noise. Nature Genetics, Vol. 38, no. 6, 2006, pp. 610 – 611. DOI 10.1038/ng0606-610

  255. N. J. Guido, X. Wang, D. Adalsteinsson, D. McMillen, J. Hasty, C. R. Cantor, T. C. Elston, J. J. Collins: A bottom-up approach to gene regulation. Nature, Vol. 439, 16 February 2006, pp 856 – 860. DOI 10.1038/nature04473

  256. B.S. Chen, Y.C. Wang: On the attenuation and amplification of molecular noise in genetic regulatory netwoks. BMC Bioinformatics, Vol. 7, Article # 52, 2006. DOI 10.1186/1471-2105-7-52 http://www.biomedcentral.com/content/pdf/1471-2105-7-52.pdf

  257. M. Scott, B. Ingalls, M. Kaern: Estimations of intrinsic and extrinsic noise in models of nonlinear genetic networks. Chaos, Vol. 16, no 2, 2006, pp 026107 (15 pages). DOI 10.1063/1.2211787 http://ctbp.ucsd.edu/pubs/pdf/69.pdf

  258. S. Hooshangi, R. Weiss: The effect of negative feedback on noise propagation in transcriptional gene networks. Chaos, Vol. 16, no 2, 2006, pp 026108 (10 pages). DOI 10.1063/1.2208927

  259. P. S. Swain, A. Longtin: Noise in genetic and neural networks. Chaos, Vol. 16, no 2, 2006, pp 026101 (6 pages). DOI 10.1063/1.2213613 http://mysite.science.uottawa.ca/alongtin/chaos06.pdf

  260. C. D. Cox, J. M. McCollum, D. W. Austin, R. D. Dar, M. L. Simpson: Frequency domain analysis of noise in simple gene circuits. Chaos, Vol. 16, no 2, 2006, pp 026102 (15 pages). DOI 10.1063/1.2204354 http://www.phys.ufl.edu/~hagen/Readings/Chaos_16_026102.pdf

  261. L. S. Tsimring, D. Volfson, J. Hasty: Stochastically driven genetic circuits. Chaos, Vol. 16, no 2, 2006, pp 026103 (12 pages). DOI 10.1063/1.2209571 http://biodynamics.ucsd.edu/publications/chaos2006.pdf

  262. van Zon J.S., Morelli M.J., Tanase-Nicola S., ten Wolde P.R.: Diffusion of transcription factors can drastically enhance the noise in gene expression. Biophysical Journal, Vol. 91, no. 12, 2006, pp. 4350 – 4367. DOI http://dx.doi.org/10.1529/biophysj.106.086157

  263. A. Van Oudenardeen: Stochastic gene expression: from prokaryotes to eukaryotes and from steady-state to out-of-equilibrium. Talk, 2006

  264. Pedraza J.M., van Oudenaarden A.: Noise propagation in gene networks. Science, New Series, Vol. 307, no. 5717, 2005, pp. 1965 – 1969. DOI 10.1126/science.1109090

  265. W. J. Blake, J. J. Collins: And the noise played on: stochastic gene expression and HIV-1 Infection. Cell, Vol. 122, no 2, July 29 2005, pp 147 – 149. DOI 10.1016/j.cell.2005.07.006 http://journals2005.pasteur.ac.ir/CELL/122(2).pdf

  266. M. Kaern, T. C. Elston, W. J. Blake, J. J. Collins: Stochasticity in gene expression: from theories to phenotypes. Nature Reviews/Genetics, Vol. 6, June 2005, pp 451 – 464. DOI 10.1038/nrg1615 http://www.bu.edu/abl/files/stochasticity%20in%20gene.pdf

  267. J. M. Raser, E. K. O'Shea: Noise in gene expression. Origins, consequences and control. Science, Vol. 309, no 5743, 23 September 2005, pp 2010 – 2013. DOI 10.1126/science.1105891

  268. Becskei A., B. B Kaufmann, A. van Oudenaarden: Contributions of low molecule number and chromosomal positioning to stochastic gene expression. Nature Genetics, Vol 37, no 9, 2005, pp 937 – 944. DOI 10.1038/ng1616

  269. J. Paulsson: Prime movers of noisy gene expression. Nature Genetics, Vol. 37, no. 9, 2005, pp 925 – 926. DOI 10.1038/ng0905-925

  270. Paulsson J.: Summing up the noise in gene networks. Nature, Vol. 427, 2004, pp. 415 – 418. DOI 10.1038/nature02257

  271. X.M. Zhu, L. Yin, L. Hood, P. Ao: Robustness, Stability and Efficiency of Phage lambda Regulatory Network: Dynamical Structure Analysis. Journal of Bioinformatics and Computational Biology, Vol. 2, no. 4, 2004, pp. 885 – 817. http://www.worldscinet.com/jbcb/02/0204/S0219720004000946.html

  272. X.M. Zhu, L. Yin, L. Hood, P. Ao: Calculating Robustness of Epigenetic States in Phage lambda Life Cycle. Functional and Integrative Genomics, Vol. 4, 2004, pp. 188 – 195. http://www.springerlink.com/content/7jxl65nw8p7cytyu/fulltext.pdf

  273. Tao Y.: Intrinsic Noise, Gene Regulation and Steady-State Statistics in a Two-Gene Network. Journal of Theoretical Biology, Vol. 231, no. 4, 2004, pp. 563 – 568. DOI 10.1016/j.jtbi.2004.07.012

  274. J. Mason, P. S. Linsay, J. J. Collins: Evolving complex dynamics in electronic models of genetic networks. Chaos, Vol. 14, no. 3, 2004, pp 707 – 715. DOI http://www.bu.edu/abl/pdf/chaos_mason.pdf

  275. F. J. Isaacs, D. J. Dwyer, C. Ding, D. D. Pervouchine, J. J. Collins: Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnology, Vol. 22, no. 7, July 2004, pp 841 – 847. DOI 10.1038/nbt986

  276. H. B. Fraser, A. E. Hirsh, G. Giaever, J. Kumm, M. B. Eisen: Noise minimization in eukaryotic gene expression. PloS Biology, Vol. 2, issue 6, June 2004, pp 0834 – 0838. http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0020137#s3

  277. H. F. Nijhout: Stochastic gene expression: dominance, thresholds and boundaries. The Biology of Genetic Dominance, edited by R. A. Veitia, chapt. 8, 2004 Eurekah.com, pp 1 – 15. http://www.biology.duke.edu/nijhout/images/Veitia(Nijhout).pdf

  278. H. Kobayashi, M. Kaern, M. Araki, K. Chung, T. S. Gardner, C. R. Cantor, J. J. Collins: Programmable cells: Interfacing natural and engineered gene networks. PNAS, Vol. 101, no 22, June 1 2004, pp 8414 – 8419. DOI 10.1073/pnas.0402940101 http://www.bu.edu/abl/pdf/pnas_kobayashi.pdf

  279. Korobkova E., Emonet T., Vilar Jose M. G., Shimizu T. S., Cluzel P. : From molecular noise to behavioural variability in a single bacterium. Nature, Vol. 428, 2004, Letters to Editor, pp. 574 – 578. DOI 10.1038/nature02404

  280. El Samad H., Khammash M.: Stochastic stability and its application to the analysis of gene regulatory networks. IEEE Conf. on Decision and Control (CDC), Vol. 3, 2004, pp. 3001 – 3006. DOI 10.1109/CDC.2004.1428924

  281. El-Samad H., Khammash M.: Intrinsic noise rejection in gene networks by regulation of stability. Int. Symp.on Control, Communications and Signal Processing (ISCCSP), 2004, pp. 187 – 190. DOI 10.1109/ISCCSP.2004.1296252

  282. M. Kærn,W. J. Blake, J.J. Collins: The engineering of gene regulatory networks. Annual Reviews Biomed. Eng., 2003, pp 179 – 206. DOI 10.1146/annurev.bioeng.5.040202.121553 http://complex.upf.es/~andreea/2006/Bib/Kaern.EngineeringGeneRegulatoryNetworks.Review.pdf

  283. J. M. Lewsky, R. H. Singer: Gene expression and the myth of the average cell. Trends in Cell Biology, Vol. 13, no 1, January 2003, pp 4 – 6. DOI 10.1016/S0962-8924(02)00002-8 http://singerlab.aecom.yu.edu/publications/pdf/SL0301.pdf

  284. W. J. Blake, M. Kaern, C. R. Cantor, J. J. Collins: Noise in eukaryotic gene expression. Nature, Vol. 42, 10 April 2003, pp 633 – 637. DOI 10.1038/nature01546'03.pdf

  285. E. M. Ozbudak, M. Thattai, I. Karstner, A. D. Grossman, A. van Oudenaarden: Regulation of noise in the expression of a single gene. Nature Genetics, Vol. 31, May 2002, pp 69 – 73. DOI 10.1038/ng869 http://www.nature.com/ng/journal/v31/n1/pdf/ng869.pdf

  286. M. B. Elowitz, A. J. Levine, E. D. Siggia, P. S. Swain: Stochastic gene expression in a single cell. Science, Vol. 297, 16 August 2002, pp 1183 – 1186. DOI 10.1126/science.1070919 http://www.google.fr/search?hl=fr&source=hp&q=+Stochastic+gene+expression+in+a+single+cell&aq=f&aqi=&aql=&oq=

  287. V. A. Kuznetsov, G. D. Knott, R. F. Bonner: General statistics of stochastic process of gene expression in eukaryotic cells. Genetics. Vol. 161, July 2002, pp 1321 – 1332. http://www.genetics.org/cgi/content/full/161/3/1321

  288. J. Hasty, D. McMillen, J. J. Collins: Engineered gene circuits. Nature. Vol. 420, 14  Nov. 2002, pp 224 – 230. DOI 10.1038/nature01257 http://chemlabs.nju.edu.cn/pub/Bio_BioChem_BioInfo/Engineered%20gene%20circuits.pdf

  289. Vilar J.M.G., Kueh H.Y., Barkai N., Leibler S.: Mechanisms of noise-resistance in genetic oscillators. Proc Natl Acad Sci USA, Vol. 99, no. 9, 2002, pp. 5988 – 5992. DOI 10.1073/pnas.092133899

  290. J. Hasty, F. Isaacs, M. Dolnik, D. McMillen, J. J. Collins: Designer gene networks: Towards fundamental cellular control. Chaos, Vol. 11, no. 1, March 2001, pp 207 – 220. DOI 10.1063/1.1345702

  291. J. Hasty, D. McMillen, F. Isaacs, J. J. Collins: Computational studies of gene regulatory networks: in numero molecular biology. Nature Reviews - Genetics, Vol. 2, April 2001, pp 268 – 279. DOI 10.1038/35066056

  292. M. Thattai, A. van Oudenaarden: Intrinsic noise in gene regulatory networks. PNAS, Vol. 98, no. 15, July 3, 2001, pp 8614 – 8619. DOI 10.1073/pnas.151588598

  293. A. Wagemakers, J. M. Buldu, J. Garcia-Ojalvo, M. A. F. Sanjuan: Des circuits et des gênes. http://www.escet.urjc.es/~fisica/personal/jmbuldu/files/conf_06_wag_cr.pdf

  294. T. S. Gardner, J. J. Collins: Gene regulation: Neutralizing noise in gene networks. Nature, Vol. 405, 1 June 2000, pp 520 – 521. DOI 10.1038/35014708 http://www.bu.edu/abl/files/neutralizing_noise_in.pdf

  295. D. A. Hume: Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood, 1 Oct. 2000, Vol. 96, No. 7, pp 2323 – 2328. http://bloodjournal.hematologylibrary.org/cgi/content/full/96/7/2323

  296. J. Hasty, J. Pradines, M. Dolnik, J. J. Collins: Noise-based switches and amplifiers for gene expression. PNAS, Feb. 29, 2000, Vol. 97, no. 5, pp 2075 – 2080. DOI http://www.pnas.org/content/97/5/2075.full.pdf

  297. T. S. Gardner, C. R. Cantor, J. J. Collins: Construction of a genetic toggle switch in Escherichia coli. Nature, Vol. 403, no 6767, 20 Jan. 2000, pp 339 – 342. DOI 10.1038/35002131

  298. H.H. McAdams, A. Arkin: It's a noisy business! Genetic regulation at the nanomolar scale. TIG, vol. 15, No. 2, February 1999, pp 65 – 69. doi:10.1016/S0168-9525(98)01659-X

  299. H. H. McAdams, A. Arkin: Stochastic mechanisms in gene expression. PNAS, Biochemistry, Vol. 94, February 1997, pp 814 – 819. DOI 10.1073/pnas.94.3.814



http://www.nslij-genetics.org/wli/1fnoise/ (A bibliography on 1/f noise in biosystems)





Copyright 2010 © UNESCO - All Rights Reserved.