Home

Specificity of Bionoise

Glossary Bio
Acronyms Bio
Beware
Contact
 
 

                                  NOISE in INTRACELLULAR TRANSPORT

Biologists observe things that cannot be explained.

Theorists explain things that cannot be observed.”

(Aharon Katchalsky)

  1. Leon-Montiel Roberto de J., Quinto-Su Pedro A.: Noise-enabled optical ratchets. Scientific Reports, Vol. 7, 2017, Article # 44287. DOI 10.1038/srep44287

  2. Yanagida Toshio, Ishii Yoshiharu: Single molecule detection, thermal fluctuation and life. Proc. of the Japan Academy Series B - Physical & Biological Sciences, Vol. 93, no. 2, 2017, pp. 51 – 63. DOI 10.2183/pjab.93.004

  3. Fan Li-Ming, Lu Ming-Tao, Huang Ren-Zhong, et al.: Investigation on the directed transport efficiency of feedback-control ratchet. Acta Physica Sinica, Vol. 66, no. 1, 2017, Article # 010501. DOI 10.7498/aps.66.010501

  4. Ohta T., Tarama M., Sano M.: Simple model of cell crawling. Physica D: Nonlinear Phenomena, Vol. 318-319, 2016, pp. 3 – 11. https://doi.org/10.1016/j.physd.2015.10.007

  5. Chahibi Y., Akyildiz I.F., Balasingham Ilangko: Propagation Modeling and Analysis of Molecular Motors in Molecular Communication. IEEE Trans on Nanobioscience, Vol. 15, no. 8, 2016, pp. 917 – 927. DOI 10.1109/TNB.2016.2620439

  6. Godec A., Metzler R.: Active transport improves the precision of linear long distance molecular signalling. J. of Physics A - Mathematical and Theoretical, Vol. 49, no. 36, 2016, Article # 364001. DOI 10.1088/1751-8113/49/36/364001

  7. Shivamoggi B.K.: A generalized Brownian motion model for turbulent relative particle dispersion. Physics Lett. A, Vol. 380, no. 36, 2016, pp. 2809 – 2814. DOI 10.1016/j.physleta.2016.06.051

  8. Bhat Deepak, Gopalakrishnan Manoj: Transport of organelles by elastically coupled motor proteins. European Physical Journal E, Vol. 39, no. 7, 2016, Article # 71. DOI 10.1140/epje/i2016-16071-0

  9. Filip Radim, Zemanek Pavel: Noise-to-signal transition of a Brownian particle in the cubic potential: I. general theory. Journal of Optics, Vol. 18, no. 6, 2016, Article # 065401. DOI 10.1088/2040-8978/18/6/065401

  10. Pietzonka P., Kleinbeck K., Seifert Udo: Extreme fluctuations of active Brownian motion. New Journal of Physics, Vol. 18, 2016, Article # 052001. DOI 10.1088/1367-2630/18/5/052001

  11. Kong Ling-Wei, Wan Rong-Zheng, Fang Hai-Ping: Transportation of Two Coupled Particles in an Asymmetric Saw-Tooth Potential. Chinese Physics Lett., Vol. 33, no. 2, 2016, Article # 020501. DOI 10.1088/0256-307X/33/2/020501

  12. Grossert C., Leder M., Denisov S., et al.: Experimental control of transport resonances in a coherent quantum rocking ratchet. Nature Communications, Vol. 7, 2016, Article # 10440. DOI 10.1038/ncomms10440

  13. Bouzat S.: Models for microtubule cargo transport coupling the Langevin equation to stochastic stepping motor dynamics: Caring about fluctuations. Physical Review E, Vol. 93, no. 1, 2016, Article # 012401. DOI 10.1103/PhysRevE.93.012401

  14. Liu De-Hao, Ren Rui-Bin, Yang Bo, et al.: Chaotic transport of fractional over-damped ratchet with fluctuation and periodic drive. Acta Physica Sinica, Vol. 64, no. 22, 2015, Article # 220501. DOI 10.7498/aps.64.220501

  15. Lv Wangyong, Wang Huiqi, Lin Lifeng, et al.: Transport properties of elastically coupled fractional Brownian motors. Physica A - Statistical Mechanics and its Applications, Vol. 437, 2015, pp. 149 – 161. DOI 10.1016/j.physa.2015.05.109

  16. Godec A., Metzler R.: Signal focusing through active transport. Physical Review E, Vol. 92, no. 1, 2015, Article # 010701. DOI 10.1103/PhysRevE.92.010701

  17. Spiechowicz J., Kostur M., Machura L.: GPU accelerated Monte Carlo simulation of Brownian motors dynamics with CUDA. Computer Physics Communications, Vol. 191, 2015, pp. 140 – 149. DOI 10.1016/j.cpc.2015.01.021

  18. Spiechowicz J., Luczka J.: Josephson phase diffusion in the superconducting quantum interference device ratchet. Chaos, Vol. 25, no. 5, 2015, Article # 053110. DOI 10.1063/1.4921211

  19. Spiechowicz J., Luczka J.: Efficiency of the SQUID ratchet driven by external current. New Journal of Physics, Vol. 17, 2015, Article # 023054. DOI 10.1088/1367-2630/17/2/023054

  20. Lisowski B., Valenti D., Spagnolo B., et al.: Stepping molecular motor amid Levy white noise. Physical Review E, Vol. 91, no. 4, 2015, Article # 042713. DOI 10.1103/PhysRevE.91.042713

  21. Chen Qiu-yan, An Meng, Xiao Hua, et al.: Rectified Brownian Transport Driven by a Spatio-Temporal Colored Noise. Chinese Journal of Physics, Vol. 53, no. 2, 2015, Article # 040702. DOI 10.6122/CJP.20141122

  22. Chou Yen-Liang, Ihle Thomas: Active matter beyond mean-field: Ring-kinetic theory for self-propelled particles. Physical Review E, Vol. 91, no. 2, 2015, Article # 022103. DOI 10.1103/PhysRevE.91.022103

  23. Qiao Li-Yan, Li Yun-yun, Zheng Zhi-Gang: Rotational effect in two-dimensional cooperative directed transport. Frontiers of Physics, Vol. 10, no. 1, 2015, pp. 87 – 94. DOI 10.1007/s11467-014-0423-3

  24. Mondal Shrabani, Bag Bidhan Chandra: Effect of interference between two colored noises on the stationary states of a Brownian particle. Physical Review E, Vol. 91, no. 4, 2015, Article # 042145. DOI 10.1103/PhysRevE.91.042145

  25. Tutu Hiroki, Horita Takehiko, Ouchi Katsuya: Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems. Journal of the Physical Society of Japan, Vol. 84, no. 4, 2015, Article # 044004. DOI 10.7566/JPSJ.84.044004

  26. Ren Rui-Bin, Liu De-Hao, Wang Chuan-Yi, Luo Mao-Kang: Directed transport of fractional Brownian motor driven by a temporal asymmetry force. Acta Physica Sinica, Vol. 64, no. 9, Special Issue: SI, 2015, Article # 090505. DOI 10.7498/aps.64.090505

  27. Qin Tian-Qi, Wang Fei, Yang Bo, Luo Mao-Kang: Transport properties of fractional coupled Brownian motors in ratchet potential with feedback. Acta Physica Sinica, Vol. 64, no. 12, 2015, Article # 120501. DOI 10.7498/aps.64.120501

  28. Wu Wei-Xia, Song Yan-Li, Han Ying-Rong: A two-dimensional coupled directed transport model. Acta Physica Sinica, Vol. 64, no. 15, 2015, Article # 150501. DOI 10.7498/aps.64.150501

  29. Zeng Chunhua, Zhang Chun, Zeng Jiakui, et al.: Noise-enhanced stability and double stochastic resonance of active Brownian motion. Journal of Statistical Mechanics - Theory & Experiment, Vol. 2015, 2015, Article # P08027. DOI 10.1088/1742-5468/2015/08/P08027

  30. de Andrade Bernardo B.: On a nonstandard Brownian motion and its maximal function. Physica A - Statistical Mechanics and its Applications, Vol. 429, 2015, pp. 1 – 9. DOI 10.1016/j.physa.2015.01.066

  31. Salgado-Garcia R., Maldonado C.: Unbiased diffusion of Brownian particles on disordered correlated potentials. Journal of Statistical Mechanics - Theory & Experiment, Vol. 2015, 2015, Article # P06012. DOI 10.1088/1742-5468/2015/06/P0601

  32. Cheng Liang, Yip Nung Kwan: The long time behavior of Brownian motion in tilted periodic potentials. Physica D - Nonlinear Phenomena, Vol. 297, 2015, pp. 1 – 32. DOI 10.1016/j.physd.2014.12.008

  33. Kazakevicius R., Ruseckas J.: Power law statistics in the velocity fluctuations of Brownian particle in inhomogeneous media and driven by colored noise. Journal of Statistical Mechanics - Theory & Experiment, Vol. 2015, 2015, Article # P02021. DOI 10.1088/1742-5468/2015/02/P02021

  34. Khoromskaia D., Harris R.J., Grosskinsky S.: Dynamics of non-Markovian exclusion processes. Journal of Statistical Mechanics - Theory & Experiment, Vol. 2014, 2014, Article # P12013. DOI 10.1088/1742-5468/2014/12/P12013

  35. Spiechowicz J., Haenggi P., Luczka J.: Brownian motors in the microscale domain: Enhancement of efficiency by noise. Physical Review E, Vol. 90, no. 3, 2014, Article # 032104. DOI 10.1103/PhysRevE.90.032104

  36. Zhou Xing-Wang, Lin Li-Feng, Ma Hong, et al.: Spatiotemporally asymmetric fractional Langevin-like ratchet. Acta Physica Sinica, Vol. 63, no. 16, 2014, Article # 160503. DOI 10.7498/aps.63.160503

  37. Zhou Xing-Wang, Lin Li-Feng, Ma Hong, et al.: Temporal-asymmetric fractional Langevin-like ratchet. Acta Physica Sinica, Vol. 63, no. 11, 2014, Article # 110501. DOI 10.7498/aps.63.110501

  38. Makhnovskii Y.A., Rozenbaum V.M., Sheu Sheh-Yi, et al.: Fluctuation-induced transport of two coupled particles: Effect of the interparticle interaction. Journal of Chemical Physics, Vol. 140, no. 21, 2014, Article # 214108. DOI 10.1063/1.4880416

  39. Martin J.L., Ishmukhametov R., Hornung T., et al.: Anatomy of F-1-ATPase powered rotation. PNAS, Vol. 111, no. 10, 2014 pp. 3715 – 3720. DOI 10.1073/pnas.1317784111

  40. Efremov A.K., Radhakrishnan Anand, Tsao David S., et al.: Delineating cooperative responses of processive motors in living cells. PNAS, Vol. 111, no. 3, 2014, pp. E334 – E343. DOI 10.1073/pnas.1313569111

  41. Yu Jin: Coordination and Control Inside Simple Biomolecular Machines. Edited by: Han K.L., Zhang X., Yang M.J.: Protein Conformational Dynamics, Book Series: Advances in Experimental Medicine and Biology, Vol. 805, 2014, pp. 353 – 384. DOI 10.1007/978-3-319-02970-2_15

  42. Moffitt J.R., Bustamante C.: Extracting signal from noise: kinetic mechanisms from a Michaelis-Menten-like expression for enzymatic fluctuations. FEBS Journal, Vol. 281, no. 2, Special Issue: SI, 2014, pp. 498 – 517. DOI 10.1111/febs.12545

  43. Rozenbaum V.M., Shapochkina I.V., Korochkova T.E.: Adiabatic Brownian ratchets with the inclusion of inertia. JETP Letters, Vol. 98, no. 9, 2014, pp. 568 – 572. DOI 10.1134/S0021364013220086

  44. Ivanov A.A., Orlov V.A.: On the Simulation of the Brownian Motion of a Domain Wall in Nanowires. Physics of the Solid State, Vol. 56, no. 12, 2014, pp. 2430 – 2439. DOI 10.1134/S1063783414120130

  45. Howdyshell M.L., Prikockis M., Lauback S., Vieira G.B., Mahajan K., Winter J., Sooryakumar R.: Deterministic and Stochastic Trajectories of Magnetic Particles: Mapping Energy Landscapes for Technology and Biology. IEEE Trans on Magnetics, Vol. 50, no. 11, 2014, pp. 1 – 7. DOI 10.1109/TMAG.2014.2323959

  46. Aijaz A., Aghvami A.H., Nakhai M.R.: On Error Performance of Network Coding in Diffusion-Based Molecular Nanonetworks. IEEE Trans on Nanotechnology, Vol. 13, no. 5, 2014, pp. 871 – 874. DOI 10.1109/TNANO.2014.2343638

  47. Metzler R., Jae-Hyung Jeon, Cherstvy A.G., Barkai E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys.Chem.Chem.Phys., Vol. 16, 2014, Article # 24128. DOI 10.1039/c4cp03465a

  48. Lukassen L.J., Oberlack M.: Colored-noise Fokker-Planck Equation for the Shear-Induced Self-Diffusion Process of Non-Brownian Particles. Physical Review E, Vol. 89, no. 5, 2014, Article # 052145. DOI 10.1103/PhysRevE.89.052145

  49. Pinaud O.: A note on stochastic Schrodinger equations with fractional multiplicative noise. J. of Differential Equations, Vol. 256, no. 4, 2014, pp. 1467 – 1491. DOI 10.1016/j.jde.2013.11.003

  50. Echeverria J., Monturet S., Joachim C.: One-way Rotation of a Molecule-rotor Driven by a Shot Noise. Nanoscale, Vol. 6, no. 5, 2014, pp. 2793 – 2799. DOI 10.1039/c3nr05814j

  51. Mauro A.J., Sigurdsson J.K., Shrake J., Atzberger P.J., Isaacson S.A.: A First-Passage Kinetic Monte Carlo method for reaction drift diffusion processes. Journal of Computational Physics, Vol. 259, 2014, pp. 536 – 567.

  52. Latorre J.C., Kramer P.R., Pavliotis G.A.: Numerical methods for computing effective transport properties of flashing Brownian motors. Journal of Computational Physics, Vol. 257, Part: A, 2014, pp. 57 – 82.  DOI 10.1016/j.jcp.2013.09.006 arXiv:1301.4301

  53. T. Zech, M. Walschaers, T. Scholak, R. Mulet, T. Wellens, A. Buchleitner: Quantum Transport in Biological Functional Units: Noise, Disorder, Structure. Fluct. Noise Lett., Vol. 12, no. 02, 2013, Article # 1340007. DOI 10.1142/S0219477513400075

  54. Fiasconaro A., Gudowska-Nowak E., Ebeling W.: Controlling Uphill motion of an Active Brownian Particle Driven by Shot-noise Energy Pulses. Physical Review E, Vol. 87, no. 3, 2013, Article # 032111. DOI 10.1103/PhysRevE.87.032111

  55. Makarov D.V., Konkov L.E.: Quantum ratchet driven by broadband perturbation. Physics Lett. A, Vol. 377, no. 43, 2013, pp. 3093 – 3097. DOI 10.1016/j.physleta.2013.09.035

  56. P. C. Bressloff, J. Newby: Stochastic models of intracellular transport. Rev. Mod. Phys. Vol. 85, no. 1, 2013, pp 135 – 196. DOI 10.1103/RevModPhys.85.135

  57. B. Qian, D. Montiel, A. Bregulla, F. Cichos, Haw Yang : Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging. Chemical Science, 2013, 10 pages. DOI 10.1039/c2sc21263c

  58. J.C. Latorre, G.A. Pavliotis, P.R. Kramer: Corrections to Einstein’s relation for Brownian motion in a tilted periodic potential. Journal of Statistical Physics, Vol. 150, 2013, pp. 776 – 803. arXiv:1208.2150v1

  59. Jeon Jae-Hyung, Barkai E., Metzler R.: Noisy continuous time random walks. Journal of Chemical Physics, Vol. 139, no. 12, 2013, Article # UNSP 121916. DOI 10.1063/1.4816635

  60. Gowrishankar T.R., Smith K.C., Weaver J.C.: Transport-Based Biophysical System Models of Cells for Quantitatively Describing Responses to Electric Fields. Proc. of the IEEE, Vol. 101, no. 2, 2013, pp. 505 – 517. DOI 10.1109/JPROC.2012.2200289

  61. Reid M.T.H., Rodriguez A.W., Johnson S.G.: Fluctuation-Induced Phenomena in Nanoscale Systems: Harnessing the Power of Noise. Proc. of the IEEE, Vol. 101, no. 2, 2013, pp. 531 – 545. DOI 10.1109/JPROC.2012.2191749

  62. M. Arrayás: Quantum Brownian Motion in a Periodic Potential: The Path Integral for a Super-Ohmic Bath. Fluct. Noise Lett., Vol. 11, no. 01, 2012, Article # 1240006. DOI 10.1142/S0219477512400068

  63. Bakewell D.J., Chichenkov A.: Fourier-Bessel Series Modeling of Dielectrophoretic Bionanoparticle Transport: Principles and Applications. IEEE Trans on NanoBioscience, Vol.11, no.1, 2012, pp 79 – 86. DOI 10.1109/TNB.2011.2178430

  64. Barkai E., Garini Y., Metzler R.: Strange Kinetics of Single Molecules in the Cell. Physics Today, Vol. 65, no. 8, 2012, pp. 29 – 37. DOI 10.1063/PT.3.1677

  65. Marquez-Lago T.T., Leier A., Burrage K.: Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology. IET Systems Biology, Vol. 6, no. 4, 2012, pp. 134 – 142. DOI 10.1049/iet-syb.2011.0049

  66. Khataee H.R., Ibrahim M.Y.: Modelling of internal architecture of kinesin nanomotor as a machine language. IET Nanobiotechnology, Vol. 6, no. 3, 2012, pp. 87 – 92. DOI 10.1049/iet-nbt.2011.0062

  67. Yoshihiko Hasegawa, Masanori Arita : Fluctuating noise drives Brownian transport. Journal of the Royal Society Interface, Vol. 9, no. 77, 2012, pp. 3554 – 3563. DOI 10.1098/rsif.2012.0603

  68. M. L. Dekhtyar, V. М. Rozenbaum : Symmetry interplay in Brownian photomotors: From a single-molecule device to ensemble transport. Journal of Chemical Physics, Vol. 137, no. 12, 2012, pp 4298 – 4302. DOI 10.1063/1.4754274

  69. S. L. Wynia-Smith, M.J. Brown, G. Chirichella, G. Kemalyan, B. A. Krantz : Electrostatic Ratchet in the Protective Antigen Channel Promotes Anthrax Toxin Translocation. The Journal of Biological Chemistry, Vol. 287, no. 52, 2012, pp. 43753 – 43764. DOI 10.1074/jbc.M112.419598

  70. D. Rings, D. Chakraborty, K. Kroy : Rotational hot Brownian motion. New Journal of Physics, Vol. 14, 2012, 053012 (15pp). DOI 10.1088/1367-2630/14/5/053012

  71. A. Lohrasebi, S. Mohamadi, S. Fadaie, H. Rafii-Tabar : Modelling the influence of thermal effects induced by radio frequency electric field on the dynamics of the ATPase nano-biomolecular motors. Physica Medica, 2012, Vol. 28, no. 3, pp. 221 – 229. DOI 10.1016/j.ejmp.2011.07.004

  72. P. C. Bressloff, J. Newby: Filling of a Poisson trap by a population of random intermittent searchers. Phys. Rev. E, Vol. 85, no. 3, 2012, pp 031909-1 – 031909-10. DOI 10.1103/PhysRevE.85.031909

  73. Wan Rong Zheng, Hu Jun, Fang Hai Ping : Asymmetric transportation induced by thermal noise at the nanoscale. Science China Physics, Mechanics & Astronomy, Vol. 55, no. 5, 2012, pp. 751 – 756. DOI 10.1007/s11433-012-4695-8

  74. Virgil Muresan, Zoia Muresan : Unconventional functions of microtubule motors. Archives of Biochemistry and Biophysics, Vol. 520, 2012, pp. 17 – 29. DOI 10.1016/j.abb.2011.12.029

  75. A. Khangjune Lee, Jong-Rim Lee, K.H. Lee : Asymmetric step-like characteristics in a tilted rocking ratchet potential. Physica B, Vol. 407, 2012, pp. 4298 – 4302. DOI 10.1016/j.physb.2012.07.021

  76. A. Pototsky, F. Marchesoni, F.V. Kusmartsev, P. Hänggi, S.E. Saveliev : Relativistic Brownian motion on a graphene chip. The European Physical Journal B, Vol. 85, no. 10, 2012, pp 356 (8 pp) DOI 10.1140/epjb/e2012-30716-7

  77. Rowchowdhury S., Salapaka S., Salapaka M.: Maximizing transport in open loop for flashing ratchets. American Control Conference (ACC), 2012, pp. 3210 – 3215. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6315543&isnumber=6314593

  78. Minhua Qiu, Hao-Chih Lee, Ge Yang: Nanometer resolution tracking and modeling of bidirectional axonal cargo transport. IEEE Int. Symp. on Biomedical Imaging (ISBI), 2012, pp. 992 – 995. DOI 10.1109/ISBI.2012.6235724

  79. Enomoto A., Moore M.J., Nakano T., Suda T.: Stochastic cargo transport by molecular motors in molecular communication. IEEE Int. Conf. on Communications (ICC), 2012, pp. 6142 – 6145. DOI 10.1109/ICC.2012.6364950

  80. C. Leduc, K. Padberg-Gehle, V. Varga, D. Helbing, S. Diez, J. Howard : Molecular crowding creates traffic jams of kinesin motors on microtubules. PNAS, Vol. 109, no. 16, 2012, pp. 6100 – 6105. DOI 10.1073/pnas.1107281109

  81. Pradipta Ghosh, S. Chattopadhyay, J. R. Chaudhuri : Enhancement of current commensurate with mutual noise–noise correlation in a symmetric periodic substrate: The benefits of noise and nonlinearity. Chemical Physics, Vol. 402, 2012, pp 48 – 55. DOI 10.1016/j.chemphys.2012.04.007

  82. Vasilescu G., Chen L.: SPICE Simulation of Intracellular Transport: Free Diffusion. Asian Journal of Control, Vol. 13, no. 5, Sept. 2011, pp. 1 – 11. DOI 10.1002/asjc.384 (wileyonlinelibrary.com)

  83. P. C. Bressloff, Jay Newby: Quasi-steady state analysis of motor-driven transport on a two-dimensional microtubular network. Phys. Rev. E, Vol. 83, no. 6, 2011, pp 061139-1 – 061139-14. DOI 10.1103/PhysRevE.83.061139

  84. Chakraborty D., Gnann  M. V., Rings D., Glaser J., Otto F., Cichos F., Kroy K.: Generalised Einstein relation for hot Brownian motion.  EPL (Europhysics Letters), Vol. 96, 2011, p. 60009 DOI 10.1209/0295-5075/96/60009

  85. R. P. Erickson, Zhiyuan Jia, S. P. Gross, C. C. Yu : How Molecular Motors Are Arranged on a Cargo Is Important for Vesicular Transport. PLOS Computational Biology, Vol. 7, no. 5, 2011, pp. 1002011 – 1002032. DOI 10.1371/journal.pcbi.1002032

  86. Mizuno D., Head D., MacKintosh F. C., Schmidt C. F. :Motor-driven force fluctuations in suspended cells and in cytoskeletal model systems. Molecular Biology of the Cell, 2011, Vol. 22, pp. 1955.

  87. T. L. Fallesen, J. C. Macosko, G. Holzwarth : Force–velocity relationship for multiple kinesin motors pulling a magnetic bead. Eur Biophys J, Vol. 40, no. 9, 2011, pp. 1071 – 1079. DOI 10.1007/s00249-011-0724-1

  88. D. Clausznitzer, R. G Endres : Noise characteristics of the Escherichia coli rotary motor. BMC Systems Biology, Vol. 5, 151, 2011, 23 pp. DOI10.1186/1752-0509-5-151

  89. J. Howard : Motor Proteins as Nanomachines: The Roles of Thermal Fluctuations in Generating Force and Motion. Progress in Mathematical Physics, Vol. 60, 2011, pp 47 – 59. DOI 10.1007/978-3-0346-0428-4_3

  90. V. M. Rozenbaum, Y. A. Makhnovskii, S.-Y. Sheu, D.-Y. Yang, S. H. Lin : Two-state Brownian motor driven by synchronously fluctuating unbiased forces. Phys. Rev. E, Vol. 84, no. 2, 2011, pp 021104 (8 pages). DOI 10.1103/PhysRevE.84.021104

  91. Butterfield A. E., Skliar M.: Temporally resolved molecular motor dynamics: A case of ncd-microtubule interactions. Int. IEEE/EMBS Conf. on Neural Engineering (NER), 2011, pp. 708 – 711. DOI 10.1109/NER.2011.5910646

  92. L. W. Rossi, C. Goldman : Jamming of molecular motors as a tool for transport cargos along microtubules. 2011, arXiv:1107.1507v3

  93. G. Verley, K. Mallick, D. Lacoste: Modified fluctuation-dissipation theorem for non-equilibrium steady states and applications to molecular motors. EPL (Europhysics Letters), Vol. 93, no 1, 2011, pp 10002-1 – 10002-6. DOI 10.1209/0295-5075/93/10002

  94. Cheng-Hung Chang, Tian-Yow Tsong: Unidirectional rotation driven by random fluctuations. 21st Int. Conf. on Noise and Fluctuations (ICNF), 12-16 June 2011, pp 41 – 44. DOI 10.1109/ICNF.2011.5994359

  95. M Esposito, M Galperin: Self-consistent quantum master equation approach to molecular transport. Journal of Physical Chemistry B, Vol. 114, no 48, 2010, pp 20362 – 20369. ISSN: 19327447

  96. Rings D., Schachoff R., Selmke M., Cichos F., Kroy K.:  Hot Brownian Motion. Physical Review Letters, Vol. 105, 2010, p. 090604  DOI 10.1103/PhysRevLett.105.090604

  97. Zhigang Zheng, Hongbin Chen: Cooperative two-dimensional directed transport. EPL (Europhysics Letters), Vol. 92, no 3, 2010, pp 30004-1 – 30004-6. DOI 10.1209/0295-5075/92/30004

  98. R. Perez-Carrasco, J. M. Sancho: Fokker-Planck approach to molecular motors. EPL (Europhysics Letters), Vol. 91, no 6, 2010, pp 60001-1 – 30004-6. DOI 10.1209/0295-5075/91/60001

  99. C. Pallavicini, M. A. Despósito, V. Levi, L. Bruno: Analysis of persistence during intracellular actin-based transport mediated by molecular motors. J. Phys.: Conf. Ser. Vol. 246, 2010, pp 012038 DOI 10.1088/1742-6596/246/1/012038

  100. Schiffmann C., Cécile Appert-Rolland, L. Santen: Shock dynamics of two-lane driven lattice gases. J. Stat. Mech., no 6, 2010, pp 06002, 24 pages. DOI 10.1088/1742-5468/2010/06/P06002

  101. J. Newby, P. C. Bressloff: Random intermittent search and the tug-of-war model of motor-driven transport. J. Stat. Mech., no 4, 2010, pp 04014, 24 pages. DOI 10.1088/1742-5468/2010/04/P04014

  102. Bao-quan Ai, Ya-feng He:Competition between ac driving forces and Lévy flights in a nonthermal ratchet. J. Stat. Mech., 2010, P04010 doi:10.1088/1742-5468/2010/04/P04010

  103. Ambarish Kunwar, A. Mogilner: Robust transport by multiple motors with nonlinear force–velocity relations and stochastic load sharing. Phys. Biol., Vol. 7, 2010, pp 016012, 14 pages. DOI 10.1088/1478-3975/7/1/016012

  104. Li Fang-Zhen, Jiang Li-Chun: A simplified tether model for molecular motor transporting cargo. Chinese Phys. B, Vol. 19, 2010, pp 020503 DOI 10.1088/1674-1056/19/2/020503

  105. Little M. A., Jones N. S.: Sparse Bayesian step-filtering for high-throughput analysis of molecular machine dynamics. IEEE Int. Conf on Acoustics, Speech, and Signal Processing (ICASSP), 2010, pp. 4162 – 4165. DOI 10.1109/ICASSP.2010.5495722

  106. Warrier A.G., Barani D.M., Deepak O.M., Krishnan N.P.K., Sujan S.S., Sairam G.L.: Biomolecular motor proteins as targets for cancer treatment- a computational study. IEEE Students' Technology Symposium (TechSym), 2010, pp. 17 – 20. DOI 10.1109/TECHSYM.2010.5469186

  107. Moore M.-J., Suda T., Oiwa K.: Molecular Communication: Modeling Noise Effects on Information Rate. IEEE Trans on NanoBioscience, Vol. 8, no. 2, 2009, pp. 169 – 180. DOI 10.1109/TNB.2009.2025039

  108. Kam N, Pilpel Y, Fainzilber M.: Can molecular motors drive distance measurements in injured neurons? PLoS Comput Biol., Vol. 5, no. 8, 2009, e1000477, 14 pages. DOI 10.1371/journal.pcbi.1000477. PMID: 19696880

  109. Moore M.J., Enomoto A., Watanabe S., Oiwa K., Suda T.: Simulating molecular motor uni-cast information rate for molecular communication. Annual Conf. on Information Sciences and Systems (CISS), 2009, pp. 859 – 864. DOI 10.1109/CISS.2009.5054837

  110. Shwetha M., Suchitra M., Vasavi C.S., Radhagayathri K.U., Krishnan N.P.K., Gopakumar D.: Computational Modeling and Simulation of Biomolecular Motors. Int. Conf. on Advances in Computing, Control, & Telecom. Technologies, (ACT), 2009, pp. 130 – 134. DOI 10.1109/ACT.2009.41

  111. Perkins T. T.: Dynamics of DNA-based molecular motors measured with 1-bp resolution. Conf. on Lasers and Electro-Optics Europe & European Quantum Electronics Conf. (CLEO Europe - EQEC 2009), 2009, pp. 1 DOI 10.1109/CLEOE-EQEC.2009.5191666

  112. Yunxin Zhang: The Efficiency of Molecular Motors. Journal of Statistical Physics, Vol. 134, Number 4, 2009, pp 669 – 679. DOI 10.1007/s10955-009-9695-3

  113. Tucker R., Saha A.K., Katira P., Bachand M., Bachand G.D., Hess H.: Temperature compensation for hybrid devices: Kinesin's Km is temperature independent. Small, Vol. 5, 2009. DOI 10.1002/smll.200801510

  114. M. Feito, F. J. Cao: Optimal operation of feedback flashing ratchets. J. Stat. Mech., 2009, P01031. DOI 10.1088/1742-5468/2009/01/P01031

  115. A. Fiasconaro, E. Gudowska-Nowak, W. Ebeling: Tuning active Brownian motion with shot-noise energy pulses. J. Stat. Mech., 2009, P01029. DOI 10.1088/1742-5468/2009/01/P01029 

  116. P. Kotelenez, M. J. Leitman, J. A. Mann: Correlated Brownian motions and the depletion effect in colloids. J. Stat. Mech., 2009, P01054. DOI 10.1088/1742-5468/2009/01/P01054

  117. E. M. Craig, B. R. Long, J. M. R. Parrondo, H. Linke: Effect of time delay on feedback control of a flashing ratchet. EPL (Europhysics Letters), Vol. 81, 2008, pp 10002-p1 – 10002-p6. DOI 10.1209/0295-5075/81/10002

  118. Chowdhury D.: Molecular Motors: Design, Mechanism, and Control. Computing in Science & Engineering , Vol. 10, no 2,, 2008, pp 70 – 77. DOI 10.1109/MCSE.2008.58

  119. Wang H.: Several Issues in Modeling Molecular Motors. J. of Computational and Theoretical Nanoscience, Vol. 5, 2008, pp 1 – 35. DOI 10.1166/jctn.2008.1202

  120. T. Schmiedl, U. Seifert: Efficiency of molecular motors at maximum power. EPL (Europhysics Letters), Vol. 83, No. 3, 2008. DOI 10.1209/0295-5075/83/30005

  121. E. M. Craig: Models for Brownian and Biomolecular Motors. Ph.D. University of Oregon, 2008, 172 pages.

  122. Wang Hongyun, Zhou Hong : Stokes Efficiency of Molecular Motor-Cargo Systems. Abstract and Applied Analysis, Vol. 2008, 2008, Article ID 241736, 13 pages. DOI 10.1155/2008/241736

  123. Kinderlehrer D. : Aspects of Modeling Transport in Small Systems with a Look at Motor Proteins. Mathematical Modeling, Simulation, Visualization and e-Learning, 2008, pp 153 – 163. DOI 10.1007/978-3-540-74339-2_9

  124. Hastings S., Kinderlehrer D., Mcleod J. B. : Diffusion Mediated Transport with a Look at Motor Proteins., 2008. Carnegie Mellon University, Pittsburgh, PA 15213.

  125. Harada Takahiro, Shin-ichi Sasa: Fluctuations, Responses and Energetics of Molecular Motors. Mathematical Biosciences, Vol. 207, no. 2, June 2007, pp. 365 – 386. DOI 10.1016/j.mbs.2006.11.003

  126. Hiyama S., Moritani Y., Suda T., Shima T., Sutoh K.: An autonomous molecular transport system using DNAs and motor proteins in molecular communication. Bio-Inspired Models of Network, Information and Computing Systems (BIMNICS), 2007, pp. 135 – 138. DOI 10.1109/BIMNICS.2007.4610099

  127. Hiratsuka Y., Takeuchi S.: Towards a microrotary motor driven by motor proteins. IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS), 2007, pp. 695 – 698. DOI 10.1109/MEMSYS.2007.4433170

  128. Yanagida T.: Single molecule nanobiology for elucidating the mechanism involved in utilizing fluctuations by biosystems. IEEE Int. Symp. on the Applications of Ferroelectrics (ISAF), 2007, pp. 855 DOI 10.1109/ISAF.2007.4393426

  129. Wei H.-H.: Dynamic Surfing and Trapping of Charged Colloids in a Traveling-Wave Electrophoretic Ratchet. Applied Physics Letters, Vol. 90, no 20, 2007, pp 204103.1 – 204103.3. DOI 10.1063/1.2740176

  130. H. Wang, T. C. Elston: Mathematical and Computational Methods for Studying Energy Transduction in Protein Motors. J. of Statistical Physics, Vol. 128, no. 1 & 2, July 2007, pp 35 – 76. DOI 10.1007/s10955-006-9169-9

  131. S. B. Rivera, S. J. Koch, J. M. Bauer, J. M. Edwards, G. D. Bachand: Temperature dependent properties of a kinesin-3 motor protein from Thermomyces lanuginosus. Fungal Genetics and Biology, Vol. 44, no 11, 2007, pp 1170 – 1179. doi:10.1016/j.fgb.2007.02.004

  132. G. D. Bachand, C. D. Montemagno: Constructing Organic/Inorganic NEMS Devices Powered by Biomolecular Motors. Biomedical Microdevices, Vol. 2, No 3, pp 179 – 184. DOI 10.1023/A:1009924327649

  133. D. V. Nicolau: Dynamic Nanodevices Based on Protein Molecular Motors. Chapter 12 in the book: BioMEMS and Biomedical Nanotechnology, Vol. 1, 2006, pp 327 – 361. ISBN-13 978-0387-25567-7

  134. H. Bolterauer, J. A. Tuszynski, E. Unger: A Directed Binding Mechanism of Processive Motion for the Kinesin Motor Protein Families. Acta Physica Polonica B, Vol. 37, no. 5, 2006, pp 1425 – 1443. Bibliographic Code 2006AcPPB..37.1425B   

  135. A. Sauga: The influence of environmental fluctuations on the dynamics of non-linear systems. Tallinn University, Dissertation on Natural Sciences, 2006, pp 1 – 30.

  136. M. Bier: The stepping motor protein as a feedback control ratchet. BioSystems, 2006, pp 1 – 7. doi:10.1016/j.biosystems.2006.07.013

  137. S. M. Block: Kinesin Motor Mechanics: Binding, Stepping, Tracking, Gating, Limping…and some Newly Discovered Rotational States. Speaker Paper 3, pp SP3-A – SP3-N. www.biophysics.org/discussions/2006/Block.pdf

  138. J. Fricks, H. Wang, T. C. Elston: A numerical algorithm for investigating the role of motor-cargo linkage in molecular motor-driven transport. Journal of Theoretical Biology, Vol. 239, 2006, pp 33 – 48. DOI 10.1016/j.jtbi.2005.07.010

  139. Tung S., Kim J.W.: Microscale hybrid devices powered by biological flagellar motors. IEEE Trans on Automation Science and Engineering, Vol. 3, no. 3, 2006, pp. 260 – 263. DOI 10.1109/TASE.2006.876905

  140. Han Ying-Rong, Zhan-Yong, Zhao Tong-jun, An Hai-Long, Zhang Su-Hua, Liu Hui, Zhang Yu-hong, Zheng-Yan, Zhuo Yi-Zhong: The Use of an `Effective Potential' to Describe the Directed Motion of a Two-State Molecular Motor. IEEE Annual Int. Conf. of Engineering in Medicine and Biology Society (EMBS), 2006, pp. 640 – 643. DOI 10.1109/IEMBS.2006.260432

  141. Moore M., Enomoto A., Nakano T., Suda T., Kayasuga A., Kojima H., Sakakibara H., Oiwa K.: Simulation of a Molecular Motor Based Communication Network. Bio-Inspired Models of Network, Information and Computing Systems (BIMNICS), 2006, pp. 1 DOI 10.1109/BIMNICS.2006.361824

  142. Mansson A., Sundberg M., Bunk R., Balaz M., Nicholls I.A., Omling P., Tegenfeldt J.O., Tagerud S., Montelius L.: Actin-Based Molecular Motors for Cargo Transportation in Nanotechnology - Potentials and Challenges. IEEE Trans. on Advanced Packaging, Vol. 28, no. 4, 2005, pp. 547 – 555. DOI 10.1109/TADVP.2005.858309

  143. Vogel V.: Nanoshuttles driven by biological motors. IEEE/EMBS Special Topic Conf. on Microtechnology in Medicine and Biology (MMB), pp. 1, 2005 DOI 10.1109/MMB.2005.1548364

  144. Thomas N.: Molecular motors: Thermodynamics and ATP synthesis. IEEE Int. Conf. on Robotics and Biomimetics (ROBIO), 2005, pp. 360 – 364. DOI 10.1109/ROBIO.2005.246293

  145. P. Hänggi, F. Marchesoni: Introduction: 100 years of Brownian motion. Chaos, Vol. 15, no 2, 2005, pp 026101 – 026101-5. DOI 10.1063/1.1895505

  146. S. J. Winder, K. R. Ayscough: Actin-binding proteins. Journal of Cell Science, Vol. 118, no. 4, 2005, pp 651 – 654. DOI 10.1242/jcs.01670

  147. P. J. Atzberger, C. S. Peskin: A Brownian dynamics model of kinesin in three dimensions incorporating the force-extension profile of the coiled-coil cargo tether. Bulletin of Mathematical Biology, 14 July 2005, pp 1 – 42. DOI 10.1007/s11538-005-9003-6 

  148. F. Cecconi, M. Cencini, M. Falcioni, A. Vulpiani: Brownian motion and diffusion: From stochastic processes to chaos and beyond. Chaos, Vol. 15, 026102, 2005, pp 1 – 9. DOI 10.1063/1.1832773

  149. H. Wang: Chemical and mechanical efficiencies of molecular motors and implications for motor mechanisms. Inst. of Physics Publishing, J. of Physics: Condensed Matter, Vol. 17, no 47, 2005, pp S3997 – S4014. DOI 10.1088/0953-8984/17/47/024

  150. J. Ankerhold, H. Grabert, P. Pechukas: Quantum Brownian motion with large friction. Chaos, Vol. 15, no 2, 2005, pp 026106 – 026106-11. DOI 10.1063/1.1855731

  151. B. Ai, , L. Wang, L. Liu: Transport reversal in a thermal ratchet. Phys. Rev. E, Vol. 72, issue 3, 2005, pp 031101 – 5. DOI 10.1103/PhysRevE.72.031101

  152. I. M. Sokolov, J. Klafter: From diffusion to anomalous diffusion: A century after Einstein's Brownian motion. Chaos, Vol. 15, no 2, 2005, pp 026103 – 026103-7. DOI 10.1063/1.1860472

  153. R. A. Cross: Intracellular Transport. Encyclopedia of Life Sciences, 2005, J. Wiley & Sons, www.els.net, A0003953, pp 1 – 12.

  154. P. Hänggi, G.-L. Ingold: Fundamental aspects of quantum Brownian motion. Chaos, Vol. 15, no 2, 2005, pp 026105 – 026105-12. DOI 10.1063/1.1853631

  155. A. Mogilner, T. Elston, H. Wang, G. Oster: Molecular Motors: Examples. In Joel Keizer's Computational Cell Biology, edited by C. Fall, E. Marland, J. Tyson, and J. Wagner. (Springer, New York), 2005, Chapter 13, pp 356 – 380. ISBN-10: 0387953698

  156. A. Mogilner, T. Elston, H. Wang, G. Oster: Molecular Motors: Theory. In Joel Keizer's Computational Cell Biology, edited by C. Fall, E. Marland, J. Tyson, and J. Wagner. (Springer, New York), Chapter 12, 2005, pp 321 – 355. ISBN-10: 0387953698

  157. Y-Z. Du, Y. Hiratsuka, S. Taira, M. Eguchi, T. Q. P. Uyeda, N. Yumoto, M. Kodaka: Motor protein nano-biomachine powered by self supplying ATP. ChemComm, Feb. 2005, DOI 10.1039/b500327 

  158. R. Eichhorn, P. Reimann, B. Cleuren, C. Van den Broeck: Moving backward noisily. Chaos, Vol. 15, no 2, 2005, pp 026113 – 026113-9. DOI 10.1063/1.1869932

  159. S.-H. Lee, D. G. Grier: One-dimensional optical thermal ratchets. J. Phys.: Condens. Matter, Vol. 17, 2005, pp S3685 – S3695. DOI 10.1088/0953-8984/17/47/003

  160. H. Linke, M. T. Downton, M. L. Zuckermann: Performance characteristics of Brownian motors. Chaos, Vol. 15, no 2, 026111, 2005, pp 1 – 11. DOI 10.1063/1.1871432

  161. Retkute R., Gleeson J.P.: Stochastic Analysis of Particle-Pair Transport in Brownian Ratchet Device. Proc. of Nanotech 2004 Conf., March 7-11 2004, Vol. 3, Boston, MA. ISBN:0-9728422-9-2

  162. S. Jeney, E. H. K. Stelzer, H. Grubmüller, E.-L. Florin: Mechanical Properties of Single Motor Molecules Studied by Three-Dimensional Thermal Force Probing in Optical Tweezers. ChemPhysChem, Vol. 5, 2004, pp 1150 – 1158. DOI 10.1002/cphc.200301027

  163. G. D. Bachand, S. B. Rivera, S. J. Koch, J. M. Edwards: A Thermostable Kinesin Motor Protein for Hybrid Nanoscale Systems. Biomolecular Materials & Interfaces, 2004, pp 68 – 69. http://www.sandia.gov/pcnsc/research/research-briefs/2004/

  164. R. Krishnan, A. M. Jayannavar: Engines at molecular scale. arXiv:physics/0408058v1 , 13 Aug 2004, pp 1 – 11. http://arxiv.org/PS_cache/physics/pdf/0408/0408058v1.pdf

  165. S. Etienne-Manneville: Actin and Microtubules in Cell Motility; Which One is in Control?. Traffic, Vol. 5, 2004, pp 470 – 477. DOI 10.1111/j.1600-0854.2004.00196.x http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0854.2004.00196.x/pdf

  166. C. Bustamante, Y. R. Chemla, N.R. Forde, D. Izhaky: Mechanical Processes in Biochemistry. Annu. Rev. Biochem., Vol. 73, 2004, pp 705 – 748. DOI 10.1146/annurev.biochem.72.121801.161542

  167. A. Upadhyaya, A. van Oudenarden: Actin Polymerization: Forcing Flat Faces Forward. Current Biology, Vol. 14, June 22, 2004, pp R467 – R489. DOI 10.1016/j.cub.2004.06.010

  168. R. A. Cross: Molecular Motors: Dynein's Gearbox. Current Biology, Vol. 14, May 4, 2004, ©2004 Elsevier Ltd., pp R1 – R2 . http://www.tifr.res.in/~roop/Publications_files/Dynein%20Gear%20-%20Commentary.pdf

  169. S. Saveliev, F. Marchesoni, P. Hänggi, F. Nori: Nonlinear signal mixing in a ratchet device. EPL (Europhysics Letters), Vol. 67, no 2, 2004, pp 179 – 186. DOI 10.1209/epl/i2004-10051-7

  170. B. Cleuren, C. Van den Broeck: Primary Parrondo paradox. EPL (Europhysics Letters), Vol. 67, no 2, 2004, pp 151 – 158. DOI 10.1209/epl/i2004-10069-9

  171. Lyshevski M.A.: Brownian dynamics: molecular systems modeling and control. IEEE Conf. on Nanotechnology (IEEE-NANO), 2004, pp. 225 – 227. DOI 10.1109/NANO.2004.1392305

  172. Chipot M., Hastings S., Kinderlehrer D. : Transport in a molecular motor system. ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 38, no. 06, 2004, pp 1011 – 1034. DOI 10.1051/m2an:2004048

  173. Lyshevski M.A.: Entropy analysis of Brownian motor. IEEE Conf. on Nanotechnology (IEEE-NANO), Vol. 1, 2003, pp. 183 – 186. DOI 10.1109/NANO.2003.1231746

  174. L. R. Huang, E. C. Cox, R. H. Austin, J. C. Sturm : Tilted Brownian Ratchet for DNA Analysis. Anal. Chem., Vol. 75, no. 24, 2003, pp. 6963 – 6967. PMID 14670059

  175. Butterfield A. E., Skliar M.: Classification of single molecular motor events. American Control Conference (ACC), Vol. 2, 2003, pp. 1830 – 1835. DOI 10.1109/ACC.2003.1239862

  176. G. Oster, H. Wang: Rotary protein motors. TRENDS in Cell Biology, Vol. 13, no. 3, March 2003, pp 114 – 121. DOI 10.1016/S0962-8924(03)00004-7

  177. R. Schmitt: Helix Rotation Model of the Flagellar Rotary Motor. Biophysical J., Vol. 85, August, 2003, pp 843 – 852. DOI 10.1016/S0006-3495(03)74524-X

  178. A. Mogilner, G. Oster: Polymer Motors: Pushing out the Front and Pulling up the Back. Current Biology, Vol. 13, September 16, 2003, pp R721 – R733.

  179. M. Bier: Processive Motor Protein as an Overdamped Brownian Stepper. Phys. Rev. Lett., Vol. 91, no. 14, 3 October 2003, pp 148104-1 – 148104-4. DOI 10.1103/PhysRevLett.91.148104

  180. M. Schiwa, G. Woehlcke: Molecular Motors. Nature, Vol. 422, 2003, pp 759 – 765. DOI 10.1038/nature01601

  181. G. Oster, H. Wang: How Protein Motors Convert Chemical Energy into Mechanical Work. In: Molecular Motors, edited by M. Schliwa. (Wiley-VCH), 2002, pp 207 – 227.

  182. A. Kamal, L. S. B. Goldstein: Principles of cargo attachment to cytoplasmic motor proteins. Current Opinion in Cell Biology, Vol. 14, 2002, pp 63 – 68. DOI 10.1016/S0955-0674(01)00295-2

  183. H. Wang, G. Oster: Ratchets, power strokes, and molecular motors. Appl. Phys. A, Material Science & Processing, Vol. 75, no 2, 2002, pp 315 – 323. DOI 10.1007/s003390201340

  184. A. Hoenger, A. Krebs, T. Wendt, V. de Marco, C. Eroglu, D. Hizlan, G. Skiniotis et al.: Structural investigations in microtubule - motor protein interactions by cryo-electron microscopy. Structural and Computational Biology Programme, EMBL Research Reports 2002, pp 147 – 153.

  185. P. Reimann, P. Hänggi: Introduction to the physics of Brownian motors. Appl. Phys. A, Materials Science & Processing, Vol. 75, 2002, pp 169 – 178. DOI 10.1007/s003390201331

  186. Lyshevski M.A.: Brownian motor analysis and its application to nanosystems. IEEE Conf. on Nanotechnology (IEEE-NANO), 2002, pp. 151 – 155. DOI 10.1109/NANO.2002.1032159

  187. Lyshevski M.A.: Motion of Brownian molecular motor: nanoscale-based modeling, analysis, and control. American Control Conference (ACC), Vol. 6, 2001, pp. 4574 – 4578. DOI 10.1109/ACC.2001.945700

  188. D. Dan, A. M. Jayannavar, M. C. Mahoto: AC driven thermal ratchets. arXiv:cond-mat/0101437v1 [cond-mat.stat-mech] 29 Jan 2001, pp 1 – 4.

  189. P. Reimann: Brownian motors: noisy transport far from equilibrium. arXiv:cond-mat/0010237v2, 4 Sept 2001, pp 1 – 250. DOI 10.1016/S0370-1573(01)00081-3

  190. L. S. B. Goldstein: Kinesin molecular motors: Transport pathways,receptors, and human disease. PNAS, June 19, 2001, vol. 98, no. 13, pp 6999 – 7003. http://www.pnas.org/content/98/13/6999.full.pdf+html

  191. M. Bier: Motor proteins - mechanochemical energy transduction on the microscopic scale. Acta Physica Polonica B, Vol. 32, no. 2, 2001, pp 287 – 294. Bibliographic Code: 2001AcPPB..32..287B

  192. C. Bustamante, D. Keller, G. Oster: The Physics of Molecular Motors. Acc. Chem. Res., Vol. 34, 2001, pp 412 – 420. DOI 10.1021/ar0001719

  193. H. Qian: The Mathematical Theory of Molecular Motor Movement and Chemomechanical Energy Transduction. arXiv:cond-mat/0106302v1 [cond-mat.stat-mech], 15 June 2001, pp 1 – 20. DOI 10.1023/A:1026428320489

  194. G. Lattanzi, A. Maritan: Master Equation Approach to Molecular Motors. Physical Review E - Statistical, Nonlinear and Soft Matter Physics, Vol. 64, no 6, 2001, p 061905. DOI 10.1103/PhysRevE.64.061905

  195. M. N. Popescu, C. M. Arzimendi, A. L. Salas-Brito, F. Family: Disorder Induced Diffusive Transport in Ratchets. arXiv:cond-mat/0002173v1 [cond-mat.soft] 11 Feb 2000, pp 1 – 14. DOI 10.1103/PhysRevLett.85.3321

  196. D. R. Klopfenstein, R. D. Vale, S.L. Rogers: Motor Protein Receptors: Moonlighting on Other Jobs. Cell, Vol. 103, Nov. 10, 2000, pp 537 – 540. DOI 10.1016/S0092-8674(00)00144-6

  197. J. A. Theriot: The Polymerization Motor. Traffic, 2000, Vol. 1, pp 19 – 28.

  198. T. C. Elston, D. You, C. S. Peskin: Protein Flexibility and the Correlation Ratchet. SIAM J. Appl. Math., Vol. 61, no. 3, 2000, pp 776 – 791. http://epubs.siam.org/siap/resource/1/smjmap/v61/i3/p776_s1?isAuthorized=no

  199. G. Oster, H. Wang: Reverse engineering a protein: the mechanochemistry of ATP synthase. Biochimica et Biophysica Acta, Vol. 1458, no 2-3, 2000, pp 482 – 510. doi:10.1016/S0005-2728(00)00096-7

  200. R. K. Soong, G. D. Bachand, H. P. Neves, A. G. Olkhovets, H. G. Craighead, C. D. Montemagno: Powering an Inorganic Nanodevice with a Biomolecular Motor. Science, 24 Nov. 2000, pp 1555 – 1558. DOI 10.1126/science.290.5496.1555

  201. G. Oster, H. Wang: ATP synthase: two motors, two fuels. Structure, Vol. 7, no. 4, 1999, pp R67 – R72. DOI 10.1016/S0969-2126(99)80046-X

  202. M. A. Titus, S. P. Gilbert: The diversity of molecular motors: an overview. Cell. Mol. Life Sci., Vol. 56, 1999, pp 181 – 183. DOI 10.1007/s000180050420

  203. Yanagida T.: Imaging and nanomanipulation of single biomolecules at work: working principle of biological molecular machines. Quantum Electronics and Laser Science Conf. (QELS) Technical Digest, pp. 33, 1999 DOI 10.1109/QELS.1999.807130

  204. M. D. Wang: Manipulation of single molecules in biology. Current Opinion in Biotechnology, 1999, pp 10:81 – 86. doi:10.1016/S0958-1669(99)80015-9

  205. T. Elston, H. Wang, G. Oster: Energy transduction in ATP synthase. Nature, Vol. 391, 29 January 1998, pp 510 – 513. DOI 10.1038/35185

  206. W. Sung, P. J. Park: Transition dynamics of biological systems on mesoscopic scales: Effects of flexibility and fluctuations. Pysica A, Vol. 254, 1998, pp 62 – 72. doi:10.1016/S0378-4371(98)00023-5

  207. J. Kula, T. Czernik, J. Łuczka : Brownian Ratchets: Transport Controlled by Thermal Noise. Phys. Rev. Lett., Vol. 80, no 7, 1998, pp 1377 – 1380. DOI 10.1103/PhysRevLett.80.1377

  208. A. Desai, T. J. Mitchison: Microtubule Polymerization Dynamics. Annu. Rev. Cell Dev. Biol., Vol. 13, 1997, pp 83 – 117.

  209. F. Jülicher, A. Ajdari, J. Prost: Modeling molecular motors. Rev. Mod. Phys., Vol. 69, no 4, 1997, pp 1269 – 1282. DOI 10.1103/RevModPhys.69.1269

  210. M. Bier: A motor protein model and how it relates to stochastic resonance, Feynman’s ratchet, and Maxwell’s demon. Lecture Notes in Physics, Springer Verlag, Vol. 484, 1997, pp 81 – 87. DOI 10.1007/BFb0105601

  211. P. Reimann, R. Bartussek, R Häussler, P. Hänggi: Brownian motors driven by temperature oscillations. Physics Let. A, Vol. 215, 1996, pp 26 – 31. DOI 10.1016/0375-9601(96)00222-8

  212. I. Dereny, A. Adjari: Collective transport of particles in a "flashing" periodic potential. Phys. Rev. E, Vol. 54, no. 1, July 1996, pp R5 – R8. DOI 10.1103/PhysRevE.54.R5

  213. R. Lahiri: Fluctuation Induced Drift and Current Reversal in Symmetric Potentials. 14 July 1996, pp 1 – 4. DOI arXiv:cond-mat/9607099v1

  214. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, A. J. Libchaber: Optical Thermal Ratchet. Phys. Rev. Lett., Vol. 74, no 9, 1995, pp 1504 – 1507. DOI 10.1103/PhysRevLett.74.1504

  215. R. Bartussek, P. Hänggi, J. G. Kissner : Periodically Rocked Thermal Ratchets. Europhys. Lett., Vol. 28, no 71, 1994, pp. 459 – 464. http://iopscience.iop.org/0295-5075/28/7/001/pdf/0295-5075_28_7_001.pdf

  216. C. S. Peskin, G. M. Odell, G. F. Oster: Cellular Motions and Thermal Fluctuations: The Brownian Ratchet. Biophys. J., Vol. 65, July 1993, pp 316 – 324. http://www.pnas.org/content/98/13/6999.full.pdf+html

  217. K. Svoboda, C. F. Schmidt, B. J. Schnapp, S. M. Block: Direct observation of kinesin stepping by optical trapping interferometry. Nature, Vol. 365, 21 Oct. 1993, pp 721 – 727. DOI 10.1038/365721a0

  218. M.P.A. Fisher, W. Zwerger: Quantum Brownian motion in a periodic potential. Physical Review B, Vol. 32, no 10, 15 Nov. 1985, pp 6190 – 6206. DOI 10.1103/PhysRevB.32.6190

  219. T. L. Hill: Microfilament or microtubule assembly or disassembly against force. PNAS, Vol. 78, no. 9, September 1981, pp 5613 – 5617. http://www.pnas.org/content/78/9/5613.full.pdf

     

Links:

J. M.R. Parrondo, B. J. de Cisneros, R. Brito: Thermodynamics of Isothermal Brownian Motors. http://seneca.fis.ucm.es/parr/PAPERS_PS/Parrondo-lutz.pdf

R. Tsekov: Nonlinear quantum Brownian motion. http://www.fqxi.org/data/forum-attachments/arXiv_0711.1442.pdf

R. E. Lee DeVille, E. Vanden-Eijnden: Regular gaits and optimal velocities for motor proteins.

M. L. Kutys, J. Fricks, W. O. Hancock: Monte Carlo Analysis of Neck Linker Extension in Kinesin Molecular Motors. 34 pages.

Copyright 2010 © UNESCO - All Rights Reserved.