Home
Glossary
Acronyms
Beware
Contact
 
 

LOW-NOISE DESIGN

Imagination is more important than knowledge”

 (Albert Einstein)

  1. Yu Yiming, Kang Kai, Fan Yiming, et al.: Analysis and Design of Inductorless Wideband Low-Noise Amplifier With Noise Cancellation Technique. IEEE Access, Vol. 5, 2017, pp. 9389 – 9397. DOI 10.1109/ACCESS.2017.2692765

  2. Yu Yiming, Liu Huihua, Wu Yunqiu, Kang Kai.: A 54.4-90 GHz Low-Noise Amplifier in 65-nm CMOS. IEEE Journal of Solid State Circ., Vol. 52, no. 11, 2017, pp. 2892 – 2904. DOI 10.1109/JSSC.2017.2727040

  3. Papadimitriou A., Bucher M.: Multi-objective Low-Noise Amplifier Optimization Using Analytical Model and Genetic Computation. Circuits Systems & Signal Processing, Vol. 36, no. 12, Special Issue: SI, 2017, pp. 4963 – 4993. DOI 10.1007/s00034-017-0634-2

  4. Jhon Hee-Sauk, Jeon Jongwook, Kang Myunggon: Design optimization of RF low noise amplifier in twin-well CMOS process. Microwave & Optical Techn. Lett., Vol. 59, no. 12, 2017, pp. 3151 – 3154. DOI 10.1002/mop.30895

  5. Dudzik Grzegorz: Ultra-stable, low-noise two-stage current source concept for electronics and laser applications. IET Circuits, Devices & Systems, Vol. 11, no. 6, 2017, pp. 613 – 617. DOI 10.1049/iet-cds.2016.0489

  6. Jeon Yeon, Nikitin Konstantin, Dewantari Aulia, et al.: Low-Noise Amplifier Protection Switch Using p-i-n Diodes With Tunable Open Stubs for Solid-State Pulsed Radar. IEEE Microwave & Wireless Comp. Lett., Vol. 27, no. 11, 2017, pp. 1004 – 1006. DOI 10.1109/LMWC.2017.2750029

  7. Liu Ming, Liu Shuangke, Ma Chengbin: A High-Efficiency/Output Power and Low-Noise Megahertz Wireless Power Transfer System Over a Wide Range of Mutual Inductance. IEEE Trans on MTT, Vol. 65, no. 11, Part: 1, 2017, pp. 4317 – 4325. DOI 10.1109/TMTT.2017.2691767

  8. van Heijningen M., de Hek P., Dourlens C., et al.: C-Band Single-Chip Radar Front-End in AlGaN/GaN Technology. IEEE Trans on MTT, Vol. 65, no. 11, Part: 1, 2017, pp. 4428 – 4437. DOI 10.1109/TMTT.2017.2688438

  9. Fabiano I., Ramella M., Manstretta D., et al.: A +25-dBm IIP3 1.7-2.1 GHz FDD Receiver Front End With Integrated Hybrid Transformer in 28-nm CMOS. IEEE Trans on MTT, Vol. 65, no. 11, Special Issue: SI, Part: 2, 2017, pp. 4677 – 4688. DOI 10.1109/TMTT.2017.2742480

  10. Singh Rahul, Slovin G., Xu Min, et al.: A Reconfigurable Dual-Frequency Narrowband CMOS LNA Using Phase-Change RF Switches. IEEE Trans on MTT, Vol. 65, no. 11, Special Issue: SI, Part: 2, 2017, pp. 4689 – 4702. DOI 10.1109/TMTT.2017.2742481

  11. Garg Robin, Natarajan Arun S.: A 28-GHz Low-Power Phased-Array Receiver Front-End With 360 degrees RTPS Phase Shift Range. IEEE Trans on MTT, Vol. 65, no. 11, Special Issue: SI, Part: 2, 2017, pp. 4703 – 4714. DOI 10.1109/TMTT.2017.2707414

  12. Behmanesh Baktash, Atarodi Seyed Mojtaba: Active Eight-Path Filter and LNA with Wide Channel Bandwidth and Center Frequency Tunability. IEEE Trans on MTT, Vol. 65, no. 11, Special Issue: SI, Part: 2, 2017, pp. 4715 – 4723. DOI 10.1109/TMTT.2017.2698466

  13. Zhang Xinwang, Chen Zipeng, Gao Yanqiang, et al.: An Interference-Robust Reconfigurable Receiver With Automatic Frequency-Calibrated LNA in 65-nm CMOS. IEEE Trans on VLSI Systems, Vol. 25, no. 11, 2017, pp. 3113 – 3124. DOI 10.1109/TVLSI.2017.2736003

  14. Yan Xu, Chen Cen, Yang Lu, et al.: A 0.1-1.1 GHz inductorless differential LNA with double gm-boosting and positive feedback. Analog Integrated Circuits & Signal Processing, Vol. 93, no. 2, 2017, pp. 205 – 215. DOI 10.1007/s10470-017-1043-y

  15. Mohammadpour A., Nabavi A.: Design and analysis of a low-noise saw-less receiver front-end resistant to strong out-of-band blocker. Analog Integrated Circuits & Signal Processing, Vol. 93, no. 2, 2017, pp. 217 – 235. DOI 10.1007/s10470-017-1035-y

  16. Lelievre O., Crozatier V., Berger P., et al.: A Model for Designing Ultralow Noise Single- and Dual-Loop 10-GHz Optoelectronic Oscillators. J. of Lightwave Technology, Vol. 35, no. 20, 2017, pp. 4366 – 4374. DOI 10.1109/JLT.2017.2729018

  17. Sahoolizadeh H., Jannesari A., Dousti M.: A new approach to frequency-domain noise analysis and design of a very-low noise amplifier in radio and microwave frequencies. Microelectronics J., Vol. 68, 2017, pp. 14 – 22. DOI 10.1016/j.mejo.2017.08.008

  18. Jafarnejad R., Jannesari A., Sobhi J.: A sub-2-dB noise figure linear wideband low noise amplifier in 0.18 mm CMOS. Microelectronics J., Vol. 67, 2017, pp. 135 – 142. DOI 10.1016/j.mejo.2017.07.012

  19. Cambero E.V.V., Munoz R.R., Casella I.R.S., et al.: CMOS Low Noise Amplifier Topology Using Compact Wu Folded Active Inductor. IEEE Latin America Trans., Vol. 15, no. 10, 2017, pp. 1827 – 1833. ISSN: 1548-0992

  20. Tu Chih-Chan, Wang Yu-Kai, Lin Tsung-Hsien: A Low-Noise Area-Efficient Chopped VCO-Based CTDSM for Sensor Applications in 40-nm CMOS. IEEE Journal of Solid State Circ., Vol. 52, no. 10, 2017, pp. 2523 – 2532. DOI 10.1109/JSSC.2017.2724025

  21. Zahir Zaira, Banerjee G., Zeidan M.A., et al.: A multi-band low noise amplifier with strong immunity to interferers. Analog Integrated Circuits & Signal Processing, Vol. 93, no. 1, 2017, pp. 13 – 27. DOI 10.1007/s10470-017-1020-5

  22. Jain Prateek, Joshi Amit Mahesh: Low leakage and high CMRR CMOS differential amplifier for biomedical application. Analog Integrated Circuits & Signal Processing, Vol. 93, no. 1, 2017, pp. 71 – 85. DOI 10.1007/s10470-017-1027-y

  23. Jhon Hee-Sauk, Jeon Jongwook, Kang Myunggon: Noise Figure Improvement by Controlling Wiring Effects in RF Low Noise Amplifiers. Microwave & Optical Techn. Lett., Vol. 59, no. 9, 2017, pp. 2413 – 2413. DOI 10.1002/mop.30748

  24. Chen Chun-Chieh, Wang Yen-Chun: A 2.4/5.2/5.8 GHz Triple-Band Common-Gate Cascode CMOS Low-Noise Amplifier. Circuits Systems & Signal Processing, Vol. 36, no. 9, 2017, pp. 3477 – 3490. DOI 10.1007/s00034-016-0474-5

  25. Woo Doo Hyung, Nam Ilku, Lee Ockgoo, Im Donggu: A UHF CMOS Variable Gain LNA with Wideband Input Impedance Matching and GSM Interoperability. J. of Semiconductor Technology & Science, Vol. 17, no. 4, 2017, pp. 499 – 504. DOI 10.5573/JSTS.2017.17.4.499

  26. Kulej Tomasz, Khateb Fabian: 0.3-V bulk-driven programmable gain amplifier in 0.18-mm CMOS. J. of Semiconductor Technology & Science, Vol. 45, no. 8, 2017, pp. 1077 – 1094. DOI 10.1002/cta.2269

  27. Zou Pei, Ma Kaixue, Mou Shouxian: A Low Phase Noise VCO Based on Substrate-Integrated Suspended Line Technology. IEEE Microwave & Wireless Comp. Lett., Vol. 27, no. 8, 2017, pp. 727 – 729. DOI 10.1109/LMWC.2017.2724003

  28. Kumar Thangarasu Bharatha, Ma Kaixue, Yeo Kiat Seng: A 60-GHz Coplanar Waveguide-Based Bidirectional LNA in SiGe BiCMOS. IEEE Microwave & Wireless Comp. Lett., Vol. 27, no. 8, 2017, pp. 742 – 744. DOI 10.1109/LMWC.2017.2723951

  29. Agarwal Pawan, Sah Suman Prasad, Molavi Reza, et al.: Switched Substrate-Shield-Based Low-Loss CMOS Inductors for Wide Tuning Range VCOs. IEEE Trans on MTT, Vol. 65, no. 8, 2017, pp. 2964 – 2976. DOI 10.1109/TMTT.2017.2675423

  30. Chang Sun-Il, Park Sung-Yun, Yoon Euisik: Low-Power Low-Noise Pseudo-Open-Loop Preamplifier for Neural Interfaces. IEEE Sensors Journal, Vol. 17, no. 15, 2017, pp. 4843 – 4852. DOI 10.1109/JSEN.2017.2717787

  31. Xu Jie, Cui Yinjie, Xu Zhengbin, et al.: Low phase noise oscillator based on complementary split-ring resonators loaded quarter-mode circular SIW cavity. Electronics Lett., Vol. 53, no. 14, 2017, pp. 933 – 934. DOI 10.1049/el.2017.1829

  32. Qin Pei, Xue Quan: Compact Wideband LNA With Gain and Input Matching Bandwidth Extensions by Transformer. IEEE Microwave & Wireless Comp. Lett., Vol. 27, no. 7, 2017, pp. 657 – 659. DOI 10.1109/LMWC.2017.2711524

  33. Hosseini S.E., Banai Ali, Kaertner F.X.: Tunable Low-Jitter Low-Drift Spurious-Free Transposed-Frequency Optoelectronic Oscillator. IEEE Trans on MTT, Vol. 65, no. 7, 2017, pp. 2625 – 2635. DOI 10.1109/TMTT.2016.2646681

  34. Guo Benqing, Chen Jun: A wideband common-gate CMOS LNA employing complementary MGTR technique. Microwave & Optical Techn. Lett., Vol. 59, no. 7, 2017, pp. 1668 – 1671. DOI 10.1002/mop.30601

  35. Pajkanovic A., Videnovic-Misic M., Stojanovic G.M.: Design and Characterization of a 130 nm CMOS Ultra-Wideband Low-Noise Amplifier. Informacije MIDEM-Journal of Microelectronics Electronic Components and Materials, Vol. 47, no. 2, 2017, pp. 59 – 70.

  36. Qin Pei, Xue Quan: Design of Wideband LNA Employing Cascaded Complimentary Common Gate and Common Source Stages. IEEE Microwave & Wireless Comp. Lett., Vol. 27, no. 6, 2017, pp. 587 – 589. DOI 10.1109/LMWC.2017.2701300

  37. Wu Liang, Leung Hiu Fai, Luong Howard C.: Design and Analysis of CMOS LNAs with Transformer Feedback for Wideband Input Matching and Noise Cancellation. IEEE Trans on CAS I: Regular Papers, Vol. 64, no. 6, 2017, pp. 1626 – 1635. DOI 10.1109/TCSI.2017.2649844

  38. Drung Dietmar, Krause Christian: Ultrastable Low-Noise Current Amplifiers With Extended Range and Improved Accuracy. IEEE Trans on Instr. & Meas., Vol. 66, no. 6, 2017, pp. 1425 – 1432. DOI 10.1109/TIM.2016.2611298

  39. Wang Jingyu, Zhu Zhangming, Liu Shubin, et al.: A low-noise programmable gain amplifier with fully balanced differential difference amplifier and class-AB output stage. Microelectronics J., Vol. 64, 2017, pp. 86 – 91. DOI 10.1016/j.mejo.2017.04.012

  40. Lin Zheng-Jia, Wu Jian-Ming, Hong Shao-Nan, et al.: Sensitivity Improvement of RF-Over-Fiber E-Field Probe with LNA and Postamplification. Microwave & Optical Techn. Lett., Vol. 59, no. 6, 2017, pp. 1375 – 1378. DOI 10.1002/mop.30539

  41. Ramya Vijai, T. Rama Rao, Venkataraman Revathi: Concurrent Multi-Band Low-Noise Amplifier. J. of Circuits, Systems & Computers, Vol. 26, no. 6, 2017, Article # 1750104. https://doi.org/10.1142/S0218126617501043

  42. Ahmed Mudassar, Chaudhry Shabbir Majeed: Wideband, CMOS, Low-Noise Amplifier for 800 MHz – 4 GHz Receivers. Electronics World, Vol. 123, no. 1972, 2017, pp. 30 – 33. ISSN: 1365-4675

  43. Cuadrado-Calle D., George D., Fuller G.A., et al.: Broadband MMIC LNAs for ALMA Band 2+3 with Noise Temperature Below 28 K. IEEE Trans on MTT, Vol. 65, no. 5, Part: 1, 2017, pp. 1589 – 1597. DOI 10.1109/TMTT.2016.2639018

  44. Kooi J.W., Reck T.J., Reeves R.A., et al.: Submillimeter InP MMIC Low-Noise Amplifier Gain Stability Characterization. IEEE Trans on Terahertz Science and Technology, Vol. 7, no. 3, 2017, pp. 335 – 346. DOI 10.1109/TMTT.2016.2639018

  45. Sato Masaru, Niida Yoshitaka, Suzuki Toshihide, et al.: Robust Q-Band InP- and GaN-HEMT Low Noise Amplifiers. IEICE Trans on Electronics, Vol. E100C, no. 5, 2017, pp. 417 – 423. DOI 10.1587/transele.E100.C.417

  46. Guo Benqing, Chen Jun, Li Lei, et al.: A Wideband Noise-Canceling CMOS LNA with Enhanced Linearity by Using Complementary nMOS and pMOS Configurations. IEEE Journal of Solid State Circ., Vol. 52, no. 5, 2017, pp. 1331 – 1344. DOI 10.1109/JSSC.2017.2657598

  47. Amin Najam Muhammad, Shen Lianfeng, Wang Zhi-Gong, et al.: 60 GHz-Band Low-Noise Amplifier. J. of Circuits, Systems & Computers, Vol. 26, no. 5, 2017, Article # 1750075. DOI 10.1142/S021812661750075X

  48. Ben Ameur Noura: A Low-Phase Noise ADPLL Based on a PRBS-Dithered DDS Enhancement Circuit. J. of Circuits, Systems & Computers, Vol. 26, no. 5, 2017, Article # 1750076. DOI 10.1142/S0218126617500761

  49. Cambero E.V.V., Capovilla C.E., Casella I.R.S., et al.: A CMOS LNA Partially Degenerated Topology Proposal Using Active Inductors. J. of Circuits, Systems & Computers, Vol. 26, no. 5, 2017, Article # 1750078. DOI 10.1142/S0218126617500785

  50. Ma Li, Wang Zhi-Gong, Xu Jian, et al.: A High-Linearity Wideband Common-Gate LNA With a Differential Active Inductor. IEEE Trans on CAS II : Express Briefs, Vol. 64, no. 4, 2017, pp. 402 – 406. DOI 10.1109/TCSII.2016.2572201

  51. Zeinolabedinzadeh S., Ulusoy A.C., Oakley M.A., et al.: A 0.3-15 GHz SiGe LNA with > 1 THz Gain-Bandwidth Product. IEEE Microwave & Wireless Comp. Lett., Vol. 27, no. 4, 2017, pp. 380 – 382. DOI 10.1109/LMWC.2017.2678402

  52. Li Nan, Feng Weiwei, Li Xiuping: A CMOS 3-12 GHz Ultrawideband Low Noise Amplifier by Dual-Resonance Network. IEEE Microwave & Wireless Comp. Lett., Vol. 27, no. 4, 2017, pp. 383 – 385. DOI 10.1109/LMWC.2017.2679203

  53. Cai Zongqi, Liu Yong, Tang Xiaohong, et al.: A Novel Low Phase Noise Oscillator Using Stubs Loaded Nested Split-Ring Resonator. IEEE Microwave & Wireless Comp. Lett., Vol. 27, no. 4, 2017, pp. 386 – 388. DOI 10.1109/LMWC.2017.2678427

  54. Al-Ashwal Waddah A., Hilton Ashby, Luiten Andre N., et al.: Low Phase Noise Frequency Synthesis for Ultrastable X-Band Oscillators. IEEE Microwave & Wireless Comp. Lett., Vol. 27, no. 4, 2017, pp. 392 – 394. DOI 10.1109/LMWC.2017.2678400

  55. Tan Gim Heng, Ramiah Harikrishnan, Mak Pui-In, et al.: A 0.35-V 520-mW 2.4-GHz Current-Bleeding Mixer with Inductive-Gate and Forward-Body Bias, Achieving > 13-dB Conversion Gain and > 55-dB Port-to-Port Isolation. IEEE Trans on MTT, Vol. 65, no. 4, 2017, pp. 1284 – 1293. DOI 10.1109/TMTT.2016.2636143

  56. Bhatt Darshak, Mukherjee Jayanta, Redoute Jean-Michel: A Self-Biased Mixer in 0.18-mm CMOS for an Ultra-Wideband Receiver. IEEE Trans on MTT, Vol. 65, no. 4, 2017, pp. 1294 – 1302. DOI 10.1109/TMTT.2016.2640949

  57. Koolivand Yarallah, Shoaei Omid, Jafarabadi-Ashtiani Shahin: Capacitive cancellation technique in design of CMOS low noise amplifier for ultrasound applications. Analog Integrated Circuits & Signal Processing, Vol. 91, no. 1, 2017, pp. 163 – 169. DOI 10.1007/s10470-017-0936-0

  58. Magod Raveesh, Suda Naveen, Ivanov Vadim, et al.: A Low-Noise Output Capacitorless Low-Dropout Regulator with a Switched-RC Bandgap Reference. IEEE Trans on Power Electronics, Vol. 32, no. 4, 2017, pp. 2856 – 2864. DOI 10.1109/TPEL.2016.2576480

  59. Khatti Naser, Dousti Massoud: A Low Phase Noise LC Quadrature VCO Using Impulse Shaping Based on Gaussian Pulse Generator. J. of Circuits, Systems & Computers, Vol. 26, no. 4, 2017, Article # 1750067. DOI 10.1142/S0218126617500670

  60. Kim Duksoo, Kim Byungjoon, Nam Sangwook: A Wideband Noise-Cancelling Receiver Front-End Using a Linearized Transconductor. IEICE Trans on Electronics, Vol. E100C, no. 3, 2017, pp. 340 – 343. DOI 10.1587/transele.E100.C.340

  61. De Souza M., Mariano A., Taris T.: Reconfigurable Inductorless Wideband CMOS LNA for Wireless Communications. IEEE Trans on CAS I : Regular Papers, Vol. 64, no. 3, 2017, pp. 675 – 685. DOI 10.1109/TCSI.2016.2618361

  62. Saadi Rokhsare Izadi, Hakimi Ahmad: Low-power and low-noise complementary metal oxide semiconductor distributed amplifier using the gain-peaking technique. Int. J. of Circuit Theory and Applications, Vol. 45, no. 3, 2017, pp. 319 – 337. DOI 10.1002/cta.2226

  63. Cazzorla A., Farinelli P., Urbani L., et al.: MEMS-based LC tank with extended tuning range for low phase-noise VCO. Int. J. of Microwave and Wireless Technologies, Vol. 9, no. 2, 2017, pp. 249 – 258. DOI 10.1017/S1759078715001579

  64. Jafarnejad R., Jannesari A., Sobhi J.: Pre-distortion technique to improve linearity of low noise amplifier. Microelectronics J., Vol. 61, 2017, pp. 95 – 105. DOI 10.1016/j.mejo.2017.01.006

  65. Jafarnejad R., Jannesari A., Sobhi J.: A linear ultra wide band low noise amplifier using pre-distortion technique. AEU-Int. Journal of Electronics & Comm., Vol. 79, 2017, pp. 172 – 183. DOI 10.1016/j.aeue.2017.05.046

  66. Reddy K. Vasudeva, Sravani K., Kumar, Prashantha H.: Low power ultra wide-band balun LNA using noise cancellation and current reuse techniques. Microelectronics J., Vol. 61, 2017, pp. 114 – 122. DOI 10.1016/j.mejo.2016.12.012

  67. Ankathi Sriharsha, Vignan Sriramula, Athukuri Srikanth, et al.: A 5-7 GHz current reuse and gm-boosted common gate low noise amplifier with LC based ESD protection in 32 nm CMOS. Analog Integrated Circuits & Signal Processing, Vol. 90, no. 3, 2017, pp. 573 – 589. DOI 10.1007/s10470-016-0915-x

  68. Rizk M.R.M., Abou-Bakr Ehab, Nasser A.A.A., et al.: Full characterization of gain and noise boundaries for NFmin or unity SWRout operation. Analog Integrated Circuits & Signal Processing, Vol. 90, no. 3, 2017, pp. 605 – 613. DOI 10.1007/s10470-016-0906-y

  69. Bhatt Darshak, Mukherjee Jayanta, Redoute Jean-Michel: A 1-11 GHz Ultra-Wideband LNA Using M-Derived Inductive Peaking Circuit in UMC 65 Nm CMOS. Microwave & Optical Techn. Lett., Vol. 59, no. 3, 2017, pp. 521 – 526. DOI 10.1002/mop.30336

  70. Lee Muyeon, Kwon Ickjin: A 5-GHz Highly Linear Floating-Body CMOS LNA with Switched Gain Control. Microwave & Optical Techn. Lett., Vol. 59, no. 3, 2017, pp. 593 – 596. DOI 10.1002/mop.30347

  71. Zhang Zhichao, Dinh Anh, Chen Li, et al.: Wide range linearity improvement technique for linear wideband LNA. IEICE Electronics Express, Vol. 14, no. 4, 2017, Article # 20170002. DOI 10.1587/elex.14.20170002

  72. Duong Tuan-Viet, Hong Wei, Tran Van-Hung, et al.: An Alternative Technique to Minimize the Phase Noise of X-band Oscillators Using Improved Group Delay SIW Filters. IEEE Microwave & Wireless Comp. Lett., Vol. 27, no. 2, 2017, pp. 153 – 155. DOI 10.1109/LMWC.2017.2648120

  73. Karaca Denizhan, Varonen Mikko, Parveg Dristy, et al.: A 53-117 GHz LNA in 28-nm FDSOI CMOS. IEEE Microwave & Wireless Comp. Lett., Vol. 27, no. 2, 2017, pp. 171 – 173. DOI 10.1109/LMWC.2016.2646912

  74. Jung Sung-Jin, Hong Seong-Kwan, Kwon Oh-Kyong: Low-Power Low-Noise Amplifier Using Attenuation-Adaptive Noise Control for Ultrasound Imaging Systems. IEEE Trans. on Biomedical Circuits and Systems, Vol. 11, no. 1, 2017, pp. 108 – 116. DOI 10.1109/TBCAS.2016.2552246

  75. Geha Chadi, Nguyen Cam, Silva-Martinez Jose: A Wideband Low-Power-Consumption 22-32.5-GHz 0.18-mm BiCMOS Active Balun-LNA With IM2 Cancellation Using a Transformer-Coupled Cascode-Cascade Topology. IEEE Trans on MTT, Vol. 65, no. 2, 2017, pp. 536 – 547. DOI 10.1109/TMTT.2016.2623778

  76. Tolani Harshita, Rao Ch. V.N.: High-Gain Wide-Bandwidth Low Noise Amplifier Multi-Chip Waveguide Module at V-Band. Microwave & Optical Techn. Lett., Vol. 59, no. 2, 2017, pp. 380 – 384. DOI 10.1002/mop.30308

  77. Guan Yangyang, Wu Yongle, Li Mingxing, et al.: Generalised MIT in a tri-band LNA. IET Microwaves Antennas & Propagation, Vol. 11, no. 2, 2017, pp. 294 – 302. DOI 10.1049/iet-map.2016.0071

  78. Sattar Sami, Zulkifli Tun Zainal Azni: A 2.4/5.2-GHz Concurrent Dual-Band CMOS Low Noise Amplifier. IEEE Access, Vol. 5, 2017, pp. 21148 – 21156. DOI 10.1109/ACCESS.2017.2756985

  79. Groves P., Conroy P., Belostotski L., et al.: Antenna Two-Port Electrical and Noise Parameters. IEEE Antennas and Wireless Propagation Lett., Vol. 16, 2017, pp. 1265 – 1268. DOI 10.1109/LAWP.2016.2631942

  80. Chen Jun-Da, Zhang Jie: A 0.7V 6.66-9.36 GHz wide tuning range CMOS LC VCO with small chip size. Int. J. of Electronics, Vol. 104, no. 10, 2017, pp. 1763 – 1776. DOI 10.1080/00207217.2017.1326173

  81. Tey Y.Y., Ramiah H., Noh Norlaili Mohd: Design of Low Noise, Flat Gain CMOS-based Ultra-wideband Low Noise Amplifier for Cognitive Radio Application. IETE Journal of Research, Vol. 63, no. 4, 2017, pp. 514 – 522. DOI 10.1080/03772063.2017.1301227

  82. Moghadam Pouria Pazhouhesh, Abrishamifar Adib: An inductorless wideband LNA with a new noise canceling technique. Turkish Journal of Electrical Eng. and Computer Sciences, Vol. 25, no. 2, 2017, pp. 1147 – 1153. DOI 10.3906/elk-1407-104

  83. Taibi A., Trabelsi M., Slimane A., et al.: Efficient UWB low noise amplifier with high out of band interference cancellation. IET Microwaves Antennas & Propagation, Vol. 11, no. 1, 2017, pp. 98 – 105. DOI 10.1049/iet-map.2016.0187

  84. Pan Zhijian, Qin Chuan, Ye Zuochang, et al.: A Low Power Inductorless Wideband LNA With G(m) Enhancement and Noise Cancellation. IEEE Microwave & Wireless Comp. Lett., Vol. 27, no. 1, 2017, pp. 58 – 60. DOI 10.1109/LMWC.2016.2629969

  85. Chen Jun, Guo Benqing, Zhang Boyang, et al.: An inductorless wideband common-gate LNA with dual capacitor cross-coupled feedback and negative impedance techniques. Integration - the VLSI Journal, Vol. 56, 2017, pp. 53 – 60. DOI 10.1016/j.vlsi.2016.09.006

  86. Park Seung Pyo, Lee Moon-Que, Lee Han Lim: Wideband highly linear LNA using modified cascode for simultaneous input and noise matching technique. Microwave & Optical Techn. Lett., Vol. 59, no. 1, 2017, pp. 15 – 17. DOI 10.1002/mop.30216

  87. Chang Hong-Yeh, Chan Chun-Ching, Shen Ian Yi-En, et al.: Design and Analysis of CMOS Low-Phase-Noise Low-Jitter Subharmonically Injection-Locked VCO with FLL Self-Alignment Technique. IEEE Trans on MTT, Vol. 64, no. 12, Special Issue: SI, Part: 2, 2016, pp. 4632 – 4645. DOI 10.1109/TMTT.2016.2623784

  88. Raja R., Theegala Ramesh, Venkataramani B.: A Low-Power and Highly Linear Merged Low Noise Amplifier-Mixer for Wireless Sensor Network Applications. J. of Low Power Electronics, Vol. 12, no. 4, 2016, pp. 368 – 384. DOI 10.1166/jolpe.2016.1455

  89. Baylis Charles, Marks Robert J., Cohen Lawrence: Pareto optimization of radar receiver low-noise amplifier source impedance for low noise and high gain. Int. J. of Microwave and Wireless Technologies, Vol. 8, no. 8, 2016, pp. 1133 – 1139. https://doi.org/10.1017/S1759078715001610

  90. Jeon Ji Yeon, Kim Sang Gyun, Jung Seung Hwan, et al.: A Transformer Feedback CMOS LNA for UWB Application. J. of Semiconductor Technology & Science, Vol. 16, no. 6, 2016, pp. 754 – 759. DOI 10.5573/JSTS.2016.16.6.754

  91. Black Brian, Brisebois Glen: Designing with OP-Amps for Low Noise. Electronics World, Vol. 122, no. 1968, 2016, pp. 40 – 41.

  92. Zhang Hong-Fei, Wang Jian-Min, Tang Qi-Jie, et al.: Design of Ultra-Low Noise and Low Temperature Usable Power System for High-Precision Detectors. IEEE Trans on Nuclear Science, Vol. 63, no. 6, 2016, pp. 2757 – 2763. DOI 10.1109/TNS.2016.2616167

  93. Chang Hong-Yeh, Chan Chun-Ching, Shen Ian Yi-En, et al.: Design and Analysis of CMOS Low-Phase-Noise Low-Jitter Subharmonically Injection-Locked VCO with FLL Self-Alignment Technique. IEEE Trans on MTT, Vol. 64, no. 12, Special Issue: SI, Part: 2, 2016, pp. 4632 – 4645. DOI 10.1109/TMTT.2016.2623784

  94. Cordova David, Bampi Sergio, Fabris Eric: A CMOS low noise transconductance amplifier for 1-6 GHz bands. Analog Integrated Circuits & Signal Processing, Vol. 89, no. 3, Special Issue: SI, 2016, pp. 585 – 592. DOI 10.1007/s10470-016-0802-5

  95. Pantoli L., Barigelli A., Leuzzi G., et al.: Analysis and design of a Q/V-band low-noise amplifier in GaAs-based 0.1-mm pHEMT technology. IET Microwaves Antennas & Propagation, Vol. 10, no. 14, 2016, pp. 1500 – 1506. DOI 10.1049/iet-map.2016.0422

  96. Coen C.T., Ulusoy A.C., Song P., et al.: Design and On-Wafer Characterization of G-Band SiGe HBT Low-Noise Amplifiers. IEEE Trans on MTT, Vol. 64, no. 11, Part: 1, 2016, pp. 3631 – 3642. DOI 10.1109/TMTT.2016.2608773

  97. Caddemi A., Cardillo E., Crupi G.: Comparative analysis of microwave low-noise amplifiers under laser illumination. Microwave & Optical Techn. Lett., Vol. 58, no. 10, 2016, pp. 2437 – 2443. DOI 10.1002/mop.30066

  98. Kahle D., Aslam S, Herrero F.A., et al.: A discrete component low-noise preamplifier readout for a linear (1 x 16) SiC photodiode array. Nuclear Instruments & Methods in Physics Research: Section A - Accelerators Spectrometers Detectors & Associated Equipment, Vol. 830, 2016, pp. 480 – 483. DOI 10.1016/j.nima.2016.06.021

  99. Mahmoudidaryan Parisa, Medi Ali: Codesign of Ka-Band Integrated Limiter and Low Noise Amplifier. IEEE Trans on MTT, Vol. 64, no. 9, 2016, pp. 2843 – 2852. DOI 10.1109/TMTT.2016.2591534

  100. Chen Zhe, Zhang Bo, Fan Yong, et al.: Design of a low noise 190 - 240 GHz subharmonic mixer based on 3D geometric modeling of Schottky diodes and CAD load-pull techniques. IEICE Electronics Express, Vol. 13, no. 16, 2016, Article # 20160604. DOI 10.1587/elex.13.20160604

  101. Im Donggu, Lee In-Young: A High IIP2 Broadband CMOS Low-Noise Amplifier With a Dual-Loop Feedback. IEEE Trans on MTT, Vol. 64, no. 7, Part: 1, 2016, pp. 2068 – 2079. DOI 10.1109/TMTT.2016.2572058

  102. Guo Shita, Xi Tianzuo, Gui Ping, et al.: A Transformer Feedback Gm-Boosting Technique for Gain Improvement and Noise Reduction in mm-Wave Cascode LNAs. IEEE Trans on MTT, Vol. 64, no. 7, Part: 1, 2016, pp. 2080 – 2090. DOI 10.1109/TMTT.2016.2564398

  103. Das Devarshi Mrinal, Srivastava Abhishek, Ananthapadmanabhan, J., et al.: A novel low-noise fully differential CMOS instrumentation amplifier with 1.88 noise efficiency factor for biomedical and sensor applications. Microelectronics J., Vol. 53, 2016, pp. 35 – 44. DOI 10.1016/j.mejo.2016.04.008

  104. Ahmadi-Mehr Seyed Amir-Reza, Tohidian Massoud, Staszewski R.B.: Analysis and Design of a Multi-Core Oscillator for Ultra-Low Phase Noise. IEEE Trans on CAS I : Regular Papers, Vol. 63, no. 4, 2016, pp. 529 – 539. DOI 10.1109/TCSI.2016.2529218

  105. Kwon Inyong, Kang Taehoon, Wells Byron T., et al.: A High-Gain 1.75-GHz Dual-Inductor Transimpedance Amplifier with Gate Noise Suppression for Fast Radiation Detection. IEEE Trans on CAS II : Express Briefs, Vol. 63, no. 4, 2016, pp. 356 – 360. DOI 10.1109/TCSII.2015.2503583

  106. Yarahmadi A., Jannesari A.: Two-path inverter-based low noise amplifier for 10-12 GHz applications. Microelectronics J., Vol. 50, 2016, pp. 76 – 82. DOI 10.1016/j.mejo.2015.12.013

  107. Gao Xingzhen, Yang Shuang, Gu Jianzhong, et al.: Broadband (22 - 40 GHz) multistage MMIC low-noise amplifier. Microwave & Optical Techn. Lett., Vol. 58, no. 4, 2016, pp. 956 – 959. DOI 10.1002/mop.29703

  108. Hassan S.M. Mohd, Marzuki A., Farid N.E., et al.: Performance Comparison of 0.13-mm CMOS Low-Noise Amplifiers Designed Using Different Transistor Layouts for Millimeter-Wave Application. Canadian Journal of Electrical and Computer Eng., Vol. 39, no. 2, 2016, pp. 112 – 121. DOI 10.1109/CJECE.2015.2508885

  109. Yoon Heein, Lee Yongsun, Lim Younghyun, et al.: A 0.56 - 2.92 GHz Wideband and Low Phase Noise Quadrature LO-Generator Using a Single LC-VCO for 2G-4G Multistandard Cellular Transceivers. IEEE Journal of Solid State Circ., Vol. 51, no. 3, 2016, pp. 614 – 625. DOI 10.1109/JSSC.2015.2510019

  110. Varonen M., Reeves R., Kangaslahti P., et al.: An MMIC Low-Noise Amplifier Design Technique. IEEE Trans on MTT, Vol. 64, no. 3, 2016, pp. 826 – 835. DOI 10.1109/TMTT.2016.2521650

  111. Jang Jingyu, Oh Juntaek, Kim Choul-Young, et al.: A 79-GHz Adaptive-Gain and Low-Noise UWB Radar Receiver Front-End in 65-nm CMOS. IEEE Trans on MTT, Vol. 64, no. 3, 2016, pp. 859 – 867. DOI 10.1109/TMTT.2016.2523511

  112. Feng Guangyin, Boon Chirn Chye, Meng Fanyi, et al.: An 88.5-110 GHz CMOS Low-Noise Amplifier for Millimeter-Wave Imaging Applications. IEEE Microwave & Wireless Comp. Lett., Vol. 26, no. 2, 2016, pp. 134 – 136. DOI 10.1109/LMWC.2016.2517071

  113. Korolev A.M., Zakharenko V.V., Ulyanov O.M.: Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment. Experimental Astronomy, Vol. 41, no. 1-2, 2016, pp. 215 – 221. DOI 10.1007/s10686-015-9466-x

  114. Shahdoost Shahab, Medi Ali, Saniei Namdar: Design of low-noise transimpedance amplifiers with capacitive feedback. Analog Integrated Circuits & Signal Processing, Vol. 86, no. 2, 2016, pp. 233 – 240. DOI 10.1007/s10470-015-0669-x

  115. Sun Mingyuan Y., Lim Wei Meng, Shi Zhengyu Y., et al.: 3-10 GHz, 6.54-mW CMOS ultrawideband low-noise amplifier using a hybrid structure. Microwave & Optical Techn. Lett., Vol. 58, no. 2, 2016, pp. 293 – 295. DOI 10.1002/mop.29544

  116. Liu M.Q., Wang C., Kim E.S., et al.: A design of LNA and RFVGA with broadband and wide dynamic gain range for digital video broadcasting application. Microwave & Optical Techn. Lett., Vol. 58, no. 2, 2016, pp. 418 – 423. DOI 10.1002/mop.29583

  117. Soon K.L., Ramiah H., Tey Y.Y.: A 3.0-10.0 GHz UWB Low-Noise Amplifier with Forward Body bias Technique. IETE Journal of Research, Vol. 62, no. 1, 2016, pp. 91 – 99. DOI 10.1080/03772063.2015.1083900

  118. Kim Jungwon, Song Youjian: Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Advances in Optics & Photonics, Vol. 8, no. 3, 2016, pp. 465 – 540. DOI 10.1364/AOP.8.000465

  119. Dobes J., Vejrazka F., Popp J., et al.: A New Criterion for Stability Assessment of the Microwave pHEMT-based Low-Noise Amplifiers. IEEE Int. Meeting for Future of Electron Devices, Kansai (IMFEDK), 2016, pp. 92 – 93. DOI 10.1109/IMFEDK.2016.7521697

  120. Fernandes M.D., Oliveira L.B., Goes J.: Wideband Noise Cancelling Balun LNA with Feedback Biasing. IEEE Int. Symp. on Circuits and Systems (ISCAS), 2016, pp. 285 – 288. DOI 10.1109/ISCAS.2016.7527226

  121. Lu Zheng Hao, Yu Xiao Peng, Yeo Kiat Seng, et al.: A wideband BiCMOS thermal noise canceling low noise amplifier with temperature compensation. Microwave & Optical Techn. Lett., Vol. 57, no. 9, 2015, pp. 2121 – 2125. DOI 10.1002/mop.29285

  122. Hoe D.H.K., Jin Xiaoyu: The Design of Low Noise Amplifiers in Deep Submicron CMOS Processes: A Convex Optimization Approach. VLSI Design, 2015, Article # UNSP 312639. DOI 10.1155/2015/312639

  123. Park Hyun-Woo, Ham Sun-Jun, Lai Ngoc-Duy-Hien, Kim Nam-Yoon, Kim Chang-Woo, Yoon Sang-Woong: An Wideband GaN Low Noise Amplifier in a 3x3 mm2 Quad Flat Non-leaded Package. J. of Semiconductor Technology & Science, Vol. 15, no. 2, 2015, pp. 301 – 306. DOI 10.5573/JSTS.2015.15.2.301

  124. Yang Ziqiang, Luo Bangyu, Dong Jun, Yang Tao: X-band low-phase noise oscillator employing substrate integrated waveguide dual-mode filter. Electronics Lett., Vol. 51, no. 6, 2015, pp. 494 – 495. DOI 10.1049/el.2014.4106

  125. Bajestan M.M., Rezaei V.D., Entesari K.: A Low Phase-Noise Wide Tuning-Range Quadrature Oscillator Using a Transformer-Based Dual-Resonance LC Ring. IEEE Trans on MTT, Vol. 63, no. 4, 2015, pp. 1142 – 1153. DOI 10.1109/TMTT.2015.2409252

  126. Bluestone A., Spencer D.T., Srinivasan S., Guerra D., Bowers J.E., Theogarajan L.: An Ultra-Low Phase-Noise 20-GHz PLL Utilizing an Optoelectronic Voltage-Controlled Oscillator. IEEE Trans on MTT, Vol. 63, no. 3, 2015, pp. 1046 – 1052. DOI 10.1109/TMTT.2015.2397890

  127. Babaie M., Staszewski R.B.: An Ultra-Low Phase Noise Class-F 2 CMOS Oscillator With 191 dBc/Hz FoM and Long-Term Reliability. IEEE Journal of SSC, Vol. 50, no. 3, 2015, pp. 679 – 692. DOI 10.1109/JSSC.2014.2379265

  128. Dong-Hyun Seo, Ji-Young Lee, Tae-Yeoul Yun: Active and Passive Combined Mixer for Low Flicker Noise and Low dc Offset. IEEE Microwave & Wireless Comp. Lett., Vol. 25, no. 7, 2015, pp. 463 – 465. DOI 10.1109/LMWC.2015.2429072

  129. Ziqiang Yang, Bangyu Luo, Jun Dong, Tao Yang: X-band low phase noise loop oscillator with differential outputs. Electronics Lett., Vol. 51, no. 13, 2015, pp. 1005 – 1007. DOI 10.1049/el.2015.1151

  130. Padovan F., Tiebout M., Mertens K.L.R., Bevilacqua A., Neviani A.: Design of Low-Noise K-Band SiGe Bipolar VCOs: Theory and Implementation. IEEE Trans on CAS I: Regular Papers, Vol. 62, no. 2, 2015, pp. 607 – 615. DOI 10.1109/TCSI.2014.2364100

  131. Fritsche D., Tretter G., Carta C., Ellinger F.: Millimeter-Wave Low-Noise Amplifier Design in 28-nm Low-Power Digital CMOS. IEEE Trans on MTT, Vol. 63, no. 6, 2015, pp. 1910 – 1922. DOI 10.1109/TMTT.2015.2427794

  132. Moschetti G., Leuther A., Massler H., Aja B., Rosch M., Schlechtweg M., Ambacher O., Kangas V., Genevieve-Perichaud M.: A 183 GHz Metamorphic HEMT Low-Noise Amplifier With 3.5 dB Noise Figure. IEEE Microwave & Wireless Comp. Lett., Vol. 25, no. 9, 2015, pp. 618 – 620. DOI 10.1109/LMWC.2015.2451355

  133. Hong Gul Han, Doo Hwan Jung, Tae Wook Kim: A 2.88 mW + 9.06 dBm IIP3 Common-Gate LNA With Dual Cross-Coupled Capacitive Feedback. IEEE Trans on MTT, Vol. 63, no. 3, 2015, pp. 1019 – 1025. DOI 10.1109/TMTT.2014.2377036

  134. Taeyoung Chung, Hankyu Lee, Daechul Jeong, Jehyung Yoon, Bumman Kim: A Wideband CMOS Noise-Canceling Low-Noise Amplifier With High Linearity. IEEE Microwave & Wireless Comp. Lett., Vol. 25, no. 8, 2015, pp. 547 – 549. DOI 10.1109/LMWC.2015.2440762

  135. Hankyu Lee, Taeyoung Chung, Heesong Seo, Inyoung Choi, Bumman Kim: A Wideband Differential Low-Noise-Amplifier With IM3 Harmonics and Noise Canceling. IEEE Microwave & Wireless Comp. Lett., Vol. 25, no. 1, 2015, pp.46 – 48. DOI 10.1109/LMWC.2014.2365733

  136. Leong K.M.K.H., Xiaobing Mei, Yoshida W., Po-Hsin Liu, Zeyang Zhou, Lange M., Ling-Shine Lee, Padilla J.G., Zamora A., Gorospe B.S., Nguyen K., Deal W.R.: A 0.85 THz Low Noise Amplifier Using InP HEMT Transistors. IEEE Microwave & Wireless Comp. Lett., Vol. 25, no. 6, 2015, pp. 397 – 399. DOI 10.1109/LMWC.2015.2421336

  137. Pepe D., Zito D.: 32 dB Gain 28 nm Bulk CMOS W-Band LNA. IEEE Microwave & Wireless Comp. Lett., Vol. 25, no. 1, 2015, pp. 55 – 57. DOI 10.1109/LMWC.2014.2370251

  138. Varonen M., Samoska L., Fung A., Padmanabhan S., Kangaslahti P., Lai R., Sarkozy S., Soria M., Owen H., Reck T., Chattopadhyay G., Larkoski P.V., Gaier T.: A WR4 Amplifier Module Chain With an 87 K Noise Temperature at 228 GHz. IEEE Microwave & Wireless Comp. Lett., Vol. 25, no. 1, 2015, pp. 58 – 60. DOI 10.1109/LMWC.2014.2369963

  139. Ulusoy A.C., Song P., Khan W.T., Kaynak M., Tillack B., Papapolymerou J., Cressler J.D.: A SiGe D-Band Low-Noise Amplifier Utilizing Gain-Boosting Technique. IEEE Microwave & Wireless Comp. Lett., Vol. 25, no. 1, 2015, pp. 61 – 63. DOI 10.1109/LMWC.2014.2369992

  140. Nebhen J., Meillère S., Masmoudi M., Seguin J.-L., Aguir K.: Design of new low-noise and low-power CMOS differential pair. Electronics Lett., Vol. 51, no. 18, 2015, pp. 1433 – 1435. DOI 10.1049/el.2015.1742

  141. Ki-Jin Kim, Suk-hui Lee, Sanghoon Park, Kwang-Ho Ahn: 60 GHz CMOS gain-boosted LNA with transformer feedbacked neutraliser. Electronics Lett., Vol. 51, no. 18, 2015, pp.1461 – 1462. DOI 10.1049/el.2015.0336

  142. Duong Quoc-Tai, Qazi Fahad, Dabrowski Jerzy J.: Analysis and design of low noise transconductance amplifier for selective receiver front-end. Analog Integrated Circuits & Signal Processing, Vol. 85, no. 2, SI, 2015, pp. 361 – 372. DOI: 10.1007/s10470-015-0629-5

  143. Chang-Jin Jeong, Yang Sun, Seok-Kyun Han, Sang-Gug Lee: A 2.2 mW, 40 dB Automatic Gain Controllable Low Noise Amplifier for FM Receiver. IEEE Trans on CAS I: Fundamental Theory and Applications, Vol. 62, no. 2, 2015, pp. 600 – 606. DOI 10.1109/TCSI.2014.2362975

  144. Chun-Wei Hsu, Tripurari K., Shih-An Yu, Kinget P.R.: A Sub-Sampling-Assisted Phase-Frequency Detector for Low-Noise PLLs With Robust Operation Under Supply Interference. IEEE Trans on CAS I: Fundamental Theory and Applications, Vol. 62, no. 1, 2015, pp. 90 – 99. DOI 10.1109/TCSI.2014.2359719

  145. Xia T., Candra P., Wang G.: Tunable Compact Low-Noise Amplifier With Permalloy Thin-Film Enabled Slow-Wave Transmission Lines. IEEE Trans on Magnetics, Vol. 51, no. 11, 2015, pp. 1 – 3. DOI 10.1109/TMAG.2015.2437900

  146. Joon Huang Chuah, Holburn D.: Design of Low-Noise High-Gain CMOS Transimpedance Amplifier for Intelligent Sensing of Secondary Electrons. IEEE Sensors Journal, Vol. 15, no. 10, 2015, pp. 5997 – 6004. DOI 10.1109/JSEN.2015.2452934

  147. Kai Liu, Wanhua Zhu, Bin Yan, Leisong Liu, GuangYou Fang: Ultralow Noise Preamplifier and Optimization Method for Induction Magnetometers. IEEE Sensors Journal, Vol. 15, no. 6, 2015, pp. 3293 – 3300. DOI 10.1109/JSEN.2015.2389336

  148. Haijun Zhou, Wenzhe Wang, Chaoyong Chen, Yaohui Zheng: A Low-Noise, Large-Dynamic-Range-Enhanced Amplifier Based on JFET Buffering Input and JFET Bootstrap Structure. IEEE Sensors Journal, Vol. 15, no. 4, 2015, pp. 2101 – 2105. DOI 10.1109/JSEN.2014.2371893

  149. Yi Shen, Tsang K.F., Wah Ching Lee, Faan Hei Hung, Triantis I.F., Kai Xuan: Design of low-phase-noise CMOS transformer-based gate-coupled quadrature VCO. Electronics Lett., Vol. 50, no. 6, 2014, pp. 434 – 436. DOI 10.1049/el.2014.0093

  150. Dancila D., Rottenberg X., Tilmans H.A.C., De Raedt W., Huynen I.: Low Phase Noise Oscillator at 60 GHz Stabilized by a Substrate Integrated Cavity Resonator in LTCC. IEEE Microwave & Wireless Comp. Lett., Vol. 24, no. 12, 2014, pp. 887 – 889. DOI 10.1109/LMWC.2014.2361645

  151. Chen Zhe, Hong Wei, Chen Ji Xin, Zhou Jianyi, Li Lin Sheng: Low- phase noise oscillator utilising high- Q active resonator based on substrate integrated waveguide technique. IET Microwaves Antennas & Propagation, Vol. 8, no. 3, 2014, pp. 137 – 144. DOI 10.1049/iet-map.2013.0380

  152. Hemmati M.J.: Ultra-low-phase-noise CMOS LC quadrature Voltage controlled oscillator with Colpitts topology. Electronics Lett., Vol. 50, no. 3, 2014, pp. 166 – 168. DOI 10.1049/el.2013.3813

  153. Pourghorban Saghati A., Entesari K.: A 1.7-2.2 GHz Compact Low Phase-Noise VCO Using a Widely-Tuned SIW Resonator. IEEE Microwave & Wireless Comp. Lett., Vol. 24, no. 9, 2014, pp. 622 – 624. DOI 10.1109/LMWC.2014.2330502

  154. Chun-Yu Lin, Mei-Lian Fan: Design of ESD Protection Diodes With Embedded SCR for Differential LNA in a 65-nm CMOS Process. IEEE Trans on MTT, Vol. 62, no. 11, 2014, pp. 2723 – 2732. DOI 10.1109/TMTT.2014.2356975

  155. Kanar T., Rebeiz G.M.: X- and K-Band SiGe HBT LNAs With 1.2- and 2.2-dB Mean Noise Figures. IEEE Trans on MTT, Vol. 62, no. 10, 2014, pp. 2381 – 2389. DOI 10.1109/TMTT.2014.2341218

  156. Kim Soo Youn, Roy Kaushik: A Low-Cost Low-Noise Amplifier in Poly-Si TFT Technology. J. of Display Technology, Vol. 10, no. 12, 2014, pp. 1110 – 1114. DOI 10.1109/JDT.2014.2351617

  157. Jaehyuk Yoon, Changkun Park: A CMOS LNA Using a Harmonic Rejection Technique to Enhance Its Linearity. IEEE Microwave & Wireless Comp. Lett., Vol. 24, no. 9, 2014, pp. 605 – 607. DOI 10.1109/LMWC.2014.2326518

  158. Zengqi Wang, Zhiqun Li, Changguo Shen: 1.8 mW wideband LNA with double capacitor-cross-coupled feedback. Electronics Lett., Vol. 50, no. 20, 2014, pp. 1482 – 1484. DOI 10.1049/el.2014.2406

  159. Slimane A., Haddad F., Bourdel S., Tedjini-Baïliche S.A., Belaroussi M.T., Mohamed T., Barthélemy H.: Compact inductorless CMOS low-noise amplifier for reconfigurable radio. Electronics Lett., Vol. 50, no. 12, 2014, pp. 892 – 893. DOI 10.1049/el.2014.1031

  160. Zhi Li, Liguo Sun, Lu Huang: 0.4 mw Wideband LNA with double gm enhancement and feed-forward noise cancellation. Electronics Lett., Vol. 50, no. 5, 2014, pp. 400 – 401. DOI 10.1049/el.2013.3537

  161. Benqing Guo, Guangjun Wen, Shiquan An: 6.8 mW 15 dBm IIP3 CMOS common-gate LNA employing post-linearisation technique. Electronics Lett., Vol. 50, no. 3, 2014, pp. 149 – 151. DOI 10.1049/el.2013.3442

  162. Lin Y.-S., Lee G.-L., Wang C.-C.: Low-power 77-81 GHz CMOS LNA with excellent matching for automotive radars. Electronics Lett., Vol. 50, no. 3, 2014, pp. 207 – 209. DOI 10.1049/el.2013.2631

  163. Bagga S., Mansano A.L., Serdijn W.A., Long J.R., van Hartingsveldt K., Philips K.: A Frequency-Selective Broadband Low-Noise Amplifier With Double-Loop Transformer Feedback. IEEE Trans on CAS I: Regular Papers, Vol. 61, no. 6, 2014, pp. 1883 – 1891. DOI 10.1109/TCSI.2013.2295010

  164. Rashtian H., Mirabbasi S.: Applications of Body Biasing in Multistage CMOS Low-Noise Amplifiers. IEEE Trans on CAS I: Regular Papers, Vol. 61, no. 6, 2014, pp. 1638 – 1647. DOI 10.1109/TCSI.2013.2290848

  165. Nakhkoob B., Hella M.M.: A 5-Gb/s Noise Optimized Receiver Using a Switched TIA for Wireless Optical Communications. IEEE Trans on CAS I: Regular Papers, Vol. 61, no. 4, 2014, pp. 1255 – 1268. DOI 10.1109/TCSI.2013.2283672

  166. Bum-Kyum Kim, Donggu Im, Jaeyoung Choi, Kwyro Lee: A Highly Linear 1 GHz 1.3 dB NF CMOS Low-Noise Amplifier With Complementary Transconductance Linearization. IEEE Journal of SSC, Vol. 49, no. 6, 2014, pp. 1286 – 1302. DOI 10.1109/JSSC.2014.2319262

  167. Tessmann A., Hurm V., Leuther A., et al.: 243 GHz low-noise amplifier MMICs and modules based on metamorphic HEMT technology. Int. Journal of Microwave and Wireless Technologies, Vol. 6, no. 3-4, SI, 2014, pp. 215 – 223. DOI 10.1017/S1759078714000166

  168. Ye Rong-Fu, Horng Tzyy-Sheng, Wu Jian-Ming: Low-Noise and High-Linearity Wideband CMOS Receiver Front-End Stacked With Glass Integrated Passive Devices. IEEE Trans on MTT, Vol. 62, no. 5, 2014, pp. 1229 – 1238. DOI 10.1109/TMTT.2014.2315170

  169. Jia Xiaojia, Niu Guofu: Impact of Correlated RF Noise on SiGe HBT Noise Parameters and LNA Design Implications. IEEE Trans on ED, Vol. 61, no. 7, 2014, pp. 2324 – 2331. DOI 10.1109/TED.2014.2324031

  170. Ulansky V.V., Kolesnik A.A., Elsherif H.M.: High performance VCO for VHF air-band transceiver. IEEE Int. Conf. on Electronics and Nanotechnology (ELNANO), 2014, pp. 378 – 382. DOI 10.1109/ELNANO.2014.6873449

  171. Hu Boyu, Yu Xiao Peng, Lim Wei Meng, Yeo Kiat Seng: Analysis and Design of Ultra-Wideband Low-Noise Amplifier With Input/Output Bandwidth Optimization and Single-Ended/Differential-Input Reconfigurability. IEEE Trans on Industrial Electronics, Vol. 61, no. 10, 2014, pp. 5672 – 5680. DOI 10.1109/TIE.2013.2297434

  172. Kim Taewon, Lee Changhyun, Park Changkun: A miniaturized 2.4-GHz CMOS low-noise amplifier using a gate-source coupling technique. Microwave & Optical Techn. Lett., Vol. 56, no. 8, 2014, pp. 1836 – 1838. DOI 10.1002/mop.28455

  173. Liu Jenny Yi-Chun, Chen Jian-Shou, Hsia Chin, Yin Ping-Yeh, Lu Chih-Wen: A Wideband Inductorless Single-to-Differential LNA in 0.18 mm CMOS Technology for Digital TV Receivers. IEEE Microwave & Wireless Comp. Lett., Vol. 24, no. 7, 2014, pp. 472 – 474. DOI 10.1109/LMWC.2014.2316495

  174. Woo Sanghyun, Shao Jin, Kim Hyoungsoo: A gm-boosted common-gate CMOS low-noise amplifier with high P1dB. Analog Integrated Circuits & Signal Processing, Vol. 80, no. 1, 2014, pp. 33 – 37. DOI 10.1007/s10470-014-0306-0

  175. Lin Yo-Sheng, Wang Chien-Chin, Lee Jen-How: A low-power, low-noise and high linearity 60 GHz wideband CMOS low-noise amplifier for wireless personal area network (WPAN) systems. Analog Integrated Circuits & Signal Processing, Vol. 80, no. 1, 2014, pp. 39 – 47. DOI 10.1007/s10470-014-0307-z

  176. Lin Yo-Sheng, Wang Chien-Chin, Lee Guan-Lin, Chen Chih-Chung: A high-performance low-noise amplifier for 71-76, 76-77, and 77-81 GHz communication systems in 90-nm CMOS. Microwave & Optical Techn. Lett., Vol. 56, no. 7, 2014, pp. 1673 – 1680. DOI 10.1002/mop.28413

  177. Pasian M., Chambon C., Bozzi M., Perregrini L., Rayet R., Fauroux B., Rawson S.: Cryogenic dual-temperature low noise amplifier in K band. IET Microwaves Antennas & Propagation, Vol. 8, no. 9, 2014, pp. 642 – 648. DOI 10.1049/iet-map.2013.0523

  178. Sturm J., Groinig M., Xiang Xinbo: Tunable Balun Low-Noise Amplifier in 65 nm CMOS Technology. RadioEngineering, Vol. 23, no. 1, 2014, Special no. SI, pp. 319 – 327.

  179. Jing Kai, Zhuang Yiqi, Gu Huaxi: A high image rejection SiGe low noise amplifier using passive notch filter. EICE Electronics Express, Vol. 11, no. 3, 2014, Article # 20130928 DOI 10.1587/elex.11.20130928

  180. Jung Jihak, Choi Jaehoon: A concurrent multiband CMOS low-noise amplifier for 4G standard receivers. Microwave & Optical Techn. Lett., Vol. 56, no. 4, 2014, pp. 834 – 838. DOI 10.1002/mop.28226

  181. Stewart D., Saavedra C.E.: Extending the bandwidth of low-noise microwave amplifier through digital assist. Electronics Lett., Vol. 50, no. 7, 2014, pp. 528 – 529. DOI 10.1049/el.2014.0176

  182. Yoon Jaehyuk, Park Changkun: 5-GHz Low Noise Amplifier with ESD Protection Method Using Transformer. Microwave & Optical Techn. Lett., Vol. 56, no. 3, 2014, pp. 684 – 689. DOI 10.1002/mop.28133

  183. Yoon Jaehyuk, Park Changkun: Input Balun Embedded Low-Noise Amplifier With a Differential Structure. IEEE Microwave & Wireless Comp. Lett., Vol. 24, no. 6, 2014, pp. 403 – 405. DOI 10.1109/LMWC.2014.2313472

  184. Woo Sanghyun, Kim Hyoungsoo: Design method of a single-ended GM boosted common-gate CMOS low-noise amplifier. Microwave & Optical Techn. Lett., Vol. 56, no. 6, 2014, pp. 1409 – 1412. DOI 10.1002/mop.28352

  185. Ding Ran, Xuan Zhe, Yao Peng, Baehr-Jones T., Prather D., Hochberg M.: Power-efficient low-noise 86 GHz broadband amplifier in 130 nm SiGe BiCMOS. Electronics Lett., Vol. 50, no. 10, 2014, pp. 741 – 177. DOI 10.1049/el.2014.0367

  186. Guo Benqing, Yang Guoning, An Shiquan: A Wideband Noise-canceling CMOS LNA Using Cross-coupled Feedback and Bulk Effect. Frequenz, Vol. 68, no. 5-6, 2014, pp. 243 – 249. DOI 10.1515/freq-2013-0160

  187. Ulansky V.V., Kolesnik A.A., Elsherif H.M.: High performance VCO for VHF air-band transceiver. IEEE Int. Conf. on Electronics and Nanotechnology (ELNANO), 2014, pp. 378 – 382. DOI 10.1109/ELNANO.2014.6873449

  188. Ulansky V.V., Kolesnik A.A., Elsherif H.M.: A new high-performance OPA based VCO for microwave applications. IEEE Microwaves, Radar and Remote Sensing Symp (MRRS), 2014, pp. 50 – 53. DOI 10.1109/MRRS.2014.6956663

  189. Ulansky V.V., Elsherif H.M.: Optimization of LC voltage-controlled oscillators in 90-nm CMOS technology for 3G transceivers. IEEE Int. Conf. on Electronics and Nanotechnology (ELNANO), 2013, pp. 85 – 89. DOI 10.1109/ELNANO.2013.6552040

  190. J. Schleeh, N. Wadefalk, P. Ĺ. Nilsson, J. P. Starski, J. Grahn: Cryogenic Broadband Ultra-Low Noise MMIC LNAs for Radio Astronomy Applications. IEEE Trans on MTT, Vol. 61, no. 2, 2013, pp. 871 – 877. DOI 10.1109/TMTT.2012.2235856

  191. Kmon P., Grybos P.: Energy Efficient Low-Noise Multichannel Neural Amplifier in Submicron CMOS Process. IEEE Trans on CAS I : Regular Papers, Vol. 60, no. 7, 2013, pp. 1764 – 1775. DOI 10.1109/TCSI.2012.2230504

  192. Ulansky V.V., Ben Suleiman S.F.: A low phase-noise GaAs FET/BJT voltage-controlled oscillator for microwave applications. Int. Symp. on Physics & Eng. of Microwaves, Millimeter and Submillimeter Waves (MSMW), 2013, pp. 407 – 414. DOI: 10.1109/MSMW.2013.6622100

  193. Cao H. S., Witvers R.H., Vanapalli S., Holland H.J., ter Brake H.J.M.: Cooling a low noise amplifier with a micromachined cryogenic cooler. Review of Scientific Instruments, Vol. 84, no. 10, 2013, Article # 105102. DOI 10.1063/1.4823528

  194. Ha Le-Thai, Xhakoni Adi, Gielen G.: A Gain-Adaptive Column Amplifier for Wide-Dynamic-Range CMOS Image Sensors. IEEE Trans on ED, Vol. 60, no. 10, 2013, Special no. SI, pp. 3601 – 3604. DOI 10.1109/TED.2013.2279238

  195. Colangeli S., Bentini A., Ciccognani W., Limiti E., Nanni A.: GaN-Based Robust Low-Noise Amplifiers. IEEE Trans on ED, Vol. 60, no. 10, 2013, Special no. SI, pp. 3238 – 3248. DOI 10.1109/TED.2013.2265718

  196. Shim Jaemin, Yang Taejun, Jeong Jichai: Design of low power CMOS ultra wide band low noise amplifier using noise canceling technique. Microelectronics J., Vol. 44, no. 9, 2013, pp. 821 – 826. DOI 10.1016/j.mejo.2013.06.001

  197. Sadhu B., Ferriss M.A., Natarajan A.S., Yaldiz S., Plouchart J.-O., Rylyakov A.V., Valdes-Garcia A., Parker B.D., Babakhani A., Reynolds S., Li X., Pileggi L., Harjani R., Tierno J.A., Friedman D.: A linearized, low-phase-noise VCO-based 25-GHz PLL with autonomic biasing. IEEE Journal of SSC, Vol. 48, no. 5, 2013, pp. 1138 – 1150. DOI 10.1109/JSSC.2013.2252513

  198. Wu Chia-Hsing, Lin Yo-Sheng, Wang Chien-Chin: A 3.1-10.6-GHz Current-Reused CMOS Ultra-Wideband Low-Noise Amplifier Using Self-Forward Body Bias and Forward Combining Techniques. Microwave & Optical Techn. Lett., Vol. 55, no. 10, 2013, pp. 2296 – 2302. DOI 10.1002/mop.27834

  199. Tong Zhi, Radic S.: Low-noise optical amplification and signal processing in parametric devices. Advances in Optics & Photonics, Vol. 5, no. 3, 2013, pp. 318 – 384. DOI 10.1364/AOP.5.000318

  200. Sun Zhengyu, Yang Hongwen, Zhang Lijun, Yan Yuepeng: A technique for bandwidth extension and noise optimization of wideband low-noise amplifier with dual feedback loops. Analog Integrated Circuits & Signal Processing, Vol. 74, no. 1, 2013, Special no. SI, pp. 203 – 213. DOI 10.1007/s10470-012-9958-9

  201. Stedler C., Werker S., Kronberger R.: Rugged High-Linearity, Low-Noise Amplifier for 1.57-GHz GPS Band. IEEE Microwave Magazine, Vol. 14, no. 1, 2013, pp. 102 – 107. DOI 10.1109/MMM.2012.2226622

  202. Wang En Cheng, Wang Zhuo Peng, Fang Shao Jun, Chen Peng: A novel UWB low noise amplifier for multi-band navigation application. AEU-Int. Journal of Electronics & Comm., Vol. 67, no. 2, 2013, pp. 144 – 148. DOI 10.1016/j.aeue.2012.07.003

  203. Chuah Joon Huang, Holburn D.: Design of low-noise CMOS transimpedance amplifier. Microelectronics Int., Vol. 30, no. 3, 2013, pp. 115 – 124. DOI 10.1108/MI-11-2012-0080

  204. Kia Hojjat Babaei, Aŕin Abu Khari, Grout Ian, Kamisian Izam: A Reconfigurable Low-Noise Amplifier Using a Tunable Active Inductor for Multistandard Receivers. Circuits Systems & Signal Processing, Vol. 32, no. 3, 2013, pp. 979 – 992. DOI 10.1007/s00034-012-9505-z

  205. Feng Zhouming, Mo Shupei., Xu Shanhui, et al.: A Compact Linearly Polarized Low-Noise Single-Frequency Fiber Laser at 1064 nm. Applied Physics Express, Vol. 6, no. 5, 2013, Article # 052701. DOI 10.7567/APEX.6.052701

  206. Tsai Ming-Hsien, Huang Sing-Kai, Hsu Shawn S.H.: Electro-Static Discharge Protection Design for V-Band Low-Noise Amplifier Using Radio Frequency Junction Varactor. Japanese Journal of Applied Physics, Vol. 52, no. 4, 2013, Special no. SI, Article # UNSP 04CE09 DOI 10.7567/JJAP.52.04CE09

  207. Li Fei, Miyahara Masaya, Matsuzawa Akira: Design of CMOS Low-Noise Analog Circuits for Particle Detector Pixel Readout LSIs. IEICE Trans on Electronics, Vol. E96C, no. 4, 2013, pp. 568 – 576. DOI 10.1587/transele.E96.C.568

  208. Lv Jian, Zhong Hui, Zhou Yun, Liao Bao Bin, Wang Jun, Jiang Ya Dong: Model-Based Low-Noise Readout Integrated Circuit Design for Uncooled Microbolometers. IEEE Sensors Journal, Vol. 13, no. 4, 2013, pp. 1207 – 1215. DOI 10.1109/JSEN.2012.2230621

  209. E.M. Di Paolo, Morgia A.: Designing Low Noise Pre-Amplifiers. Electronics World, Vol. 119, no. 1922, 2013, pp. 20 – 25.

  210. David M.P. Smith, L. Bakker, R.H. Witvers, B.E.M. Woestenburg, K.D. Palmer: Low-noise amplifier for radio astronomy. Int. Journal of Microwave and Wireless Technologies, Vol. 5, no. 4, 2013, pp 453 – 461. DOI http://dx.doi.org/10.1017/S1759078712000840

  211. Werley C.A., Teo S.M., Ofori-Okai B.K., Sivarajah P., Nelson K.A.: High-Resolution, Low-Noise Imaging in THz Polaritonics. IEEE Trans on Terahertz Science and Technology, Vol. 3, no. 3, 2013, pp 239 – 247. DOI 10.1109/TTHZ.2013.2250580

  212. Ming-Hsien Tsai, Hsu S.S.H., Fu-Lung Hsueh, Chewn-Pu Jou, Tzu-Jin Yeh: Design of 60-GHz Low-Noise Amplifiers With Low NF and Robust ESD Protection in 65-nm CMOS. IEEE Trans on MTT, Vol. 61, no. 1, Part II, 2013, pp 553 – 561. DOI 10.1109/TMTT.2012.2229289

  213. Xiaohua Yu, Neihart N.M.: Analysis and Design of a Reconfigurable Multimode Low-Noise Amplifier Utilizing a Multitap Transformer. IEEE Trans on MTT, Vol. 61, no. 3, 2013, pp 1236 – 1246. DOI 10.1109/TMTT.2012.2237037

  214. Jui-Chih Kao, Ping Chen, Pin-Cheng Huang, Huei Wang: A Novel Distributed Amplifier With High Gain, Low Noise, and High Output Power in 0.18-mm CMOS Technology. IEEE Trans on MTT, Vol. 61, no. 4, 2013, pp 1533 – 1542. DOI 10.1109/TMTT.2013.2247048

  215. Mu-Tsung Lai, Hen-Wai Tsao: Ultra-Low-Power Cascaded CMOS LNA With Positive Feedback and Bias Optimization. IEEE Trans on MTT, Vol. 61, no. 5, Part I, 2013, pp 1934 – 1945. DOI 10.1109/TMTT.2013.2256144

  216. Feng Chen, Yu Xiaopeng, Lim Wei Meng, Gu Jiangmin, Sui Wenquan: Compact 50-62 GHz current-reused low-noise amplifier with gate-drain transformer feedback. Electronics Lett., Vol. 49, no. 11, 2013, pp 720 – 722. DOI 10.1049/el.2013.0817

  217. Ding Chunbao, Zhang Wanrong, Jin Dongyue, Xie Hongyun, Shen Pei, Chen Liang: A novel low power UWB cascode SiGe BiCMOS LNA with current reuse and zero-pole cancellation. AEUE – Int. Journal of Electronics and Comm., Vol. 67, no. 4, 2013, pp 323 – 328. DOI 10.1016/j.aeue.2012.10.002

  218. Manjula S., Selvathi D.: Design of Low Power 2.4GHz CMOS Cascode LNA with Reduced Noise Figure for WSN Applications. Wireless Personal Communications, Vol. 70, no. 4, 2013, pp 1965 – 1976. DOI 10.1007/s11277-012-0790-4

  219. Wang Yu-Lin, Hsu Ming-Wei, Ko Wen, Her Man-Long: A Ku-band low noise amplifier based on transformer. Advanced Materials Research, Vol. 655 - 657, 2013, pp 1550 – 1554. DOI 10.4028/www.scientific.net/AMR.655-657.1550

  220. Zhang Kaichen, Li Wei, Li Ning, Ren Junyan: A 0.13-μm CMOS 0.1-12GHz active balun-LNA for multi-standard applications. IEICE Electronics Express, Vol. 10, no. 5, 2013, pp 20130016. DOI 10.1587/elex.10.20130016

  221. Chung-Yu Wu, Wei-Ming Chen, Liang-Ting Kuo: A CMOS Power-Efficient Low-Noise Current-Mode Front-End Amplifier for Neural Signal Recording. IEEE Trans. on Biomedical Circuits and Systems, Vol. 7, no. 2, 2013, pp 107 – 114. DOI 10.1109/TBCAS.2013.2256422

  222. Salleh A., Yong K.S., Abd Aziz M.Z.A., Misran M.H., Mohamad N.R.: Design of Low Power Wideband Low Noise Amplifier for Software Defined Radio at 100MHz to 1GHz. Procedia Engineering, Vol. 53, 2013, pp 368 – 375. DOI 10.1016/j.proeng.2013.02.048

  223. Rifin R., Mamun, Amin S., Husain H.: Design of an Inductorless LNA Using Resistive Feedback Topology for UWB Applications. Research Journal of Applied Sciences, Engineering and Technology, Vol. 5, no. 6, 2013, pp 2196 – 2202.

  224. Meng-Ting Hsu, Shih-Yu Hsu, Yu-Hwa Lin: Low-power CMOS LNA based on dual resistive-feedback structure with peaking inductor for wideband application. Int. Journal of Microwave and Wireless Technologies, Vol. 5, no. 1, 2013, pp 65 – 70. DOI 10.1017/S1759078712000748

  225. Manjula J., Malarvizhi S.: A 1GHz current reuse low noise amplifier with active inductor load. Int. Multi-Conf. on Automation, Computing, Comm., Control and Compressed Sensing (iMac4s), 2013, pp 211 – 215. DOI 10.1109/iMac4s.2013.6526408

  226. Kao H. L., Yeh C. S., Cho C. L., Wang B. W., Lee P. C., Wei B. H., Chiu H. C.: Design of an S-band 0.35 µm AlGaN/GaN LNA using cascode topology. IEEE 16th Int. Symp. on Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2013, pp 250 – 253. DOI 10.1109/DDECS.2013.6549827

  227. Feng C., Yu X.P., Lu Z.H., Lim W.M., Sui W.Q.: 3-10 GHz self-biased resistive-feedback LNA with inductive source degeneration. Electronics Lett., Vol. 49, no. 6, 2013, pp 387 – 388. DOI 10.1049/el.2012.4472

  228. Lee J.H., Lin Y.S.: 3.88 dB NF 60 GHz CMOS UWB LNA with small group-delay-variation. Electronics Lett., Vol. 49, no. 7, 2013, pp 472 – 474. DOI 10.1049/el.2012.4455

  229. Xiaojun Bi, Yongxin Guo, Yong Zhong Xiong, Arasu M.A., Je M.: A 19.2 mW, > 45 dB Gain and High-Selectivity 94 GHz LNA in 0.13 mm SiGe BiCMOS. IEEE Microwave and Guided Wave Letters, Vol. 23, no. 5, 2013, pp 261 – 263. DOI 10.1109/LMWC.2013.2251620

  230. Uzunkol M., Rebeiz G.M.: A Low-Noise 150 – 210 GHz Detector in 45 nm CMOS SOI. IEEE Microwave and Guided Wave Letters, Vol. 23, no. 6, 2013, pp 309 – 311. DOI 10.1109/LMWC.2013.2258256

  231. Sunwoo Kong, Choul-Young Kim, Songcheol Hong: A K-Band UWB Low-Noise CMOS Mixer With Bleeding Path Gm-Boosting Technique. IEEE Trans on CAS II: Express Briefs, Vol. 60, no. 3, 2013, pp 117 – 121. DOI 10.1109/TCSII.2013.2240792

  232. Im D.: A +9-dBm Output P1dB Active Feedback CMOS Wideband LNA for SAW-Less Receivers. IEEE Trans on CAS II: Express Briefs, Vol. 60, no. 7, 2013, pp 377 – 81. DOI 10.1109/TCSII.2013.2261174

  233. Park J.W., Razavi B.: A Harmonic-Rejecting CMOS LNA for Broadband Radios. IEEE Journal of SSC, Vol. 48, no. 4, 2013, pp 1072 – 1084. DOI 10.1109/JSSC.2013.2237651

  234. Seungkee Min, Copani T., Kiaei S., Bakkaloglu B.: A 90-nm CMOS 5-GHz Ring-Oscillator PLL With Delay-Discriminator-Based Active Phase-Noise Cancellation. IEEE Journal of SSC, Vol. 48, no. 5, 2013, pp 1151 – 1160. DOI 10.1109/JSSC.2013.2252515

  235. Zhiqun Li, Liang Chen, Zengqi Wang, Chenjian Wu, Jia Cao, Meng Zhang, Chong Wang, Yang Liu, Zhigong Wang: Low-noise and high-gain wideband LNA with gm-boosting technique. Electronics Lett., Vol. 49, no. 18, 2013, pp 1126 – 1128. DOI 10.1049/el.2013.1687

  236. Kobayashi K. W.: An 8-W 250-MHz to 3-GHz Decade-Bandwidth Low-Noise GaN MMIC Feedback Amplifier With > +51-dBm OIP3. IEEE Journal of SSC, Vol. 47, no. 10, 2012, pp 2316 – 2326. DOI 10.1109/JSSC.2012.2204929

  237. Chen K.-H ., Liu S.-I.: Inductorless Wideband CMOS Low-Noise Amplifiers Using Noise-Cancelling Technique. IEEE Trans on CAS I: Regular Papers, Vol. 59 , no. 2, 2012, pp. 305 – 314. DOI 10.1109/TCSI.2011.2162461

  238. J. Schleeh, G. Alestig, J. Halonen, A. Malmros, B. Nilsson, P.A. Nilsson, J. Starski, N. Wadefalk, H. Zirath, J. Grahn.: Ultralow-Power Cryogenic InP HEMT with Minimum Noise Temperature of 1 K at 6 GHz. IEEE ED Lett., Vol. 33, no. 5, 2012, pp. 664 – 666. DOI 10.1109/LED.2012.2187422

  239. Lee Chie-In, Lin Wei-Cheng, Lin Ji-Min: Low-power and high-linearity SiGe HBT low-noise amplifier using IM3 cancellation technique. Microelectronic Engineering, Vol. 91, 2012, pp 59 – 63. DOI 10.1016/j.mee.2011.10.005

  240. Dores J. M., Becerra-Alvarez E. C., Martins M. A., de la Rosa J. M., Fernandes J. R.: Efficient biasing circuit strategies for inductorless wideband low noise amplifiers with feedback. Microelectronics J., 2012, Vol. 43, no. 10, pp 714 – 720.

  241. Sanghyun Woo, Woonyun Kim, Chang-Ho Lee, Hyoungsoo Kim, Laskar Joy: A Wideband Low-Power CMOS LNA With Positive–Negative Feedback for Noise, Gain, and Linearity Optimization. IEEE Trans on MTT, 2012, Vol. 60, no. 10, pp 3169 – 3178. DOI 10.1109/TMTT.2012.2211379

  242. Jusung Kim, Silva-Martinez J.: Wideband Inductorless Balun-LNA Employing Feedback for Low-Power Low-Voltage Applications. IEEE Trans on MTT, 2012, Vol. 60, no. 9, pp 2833 – 2842. DOI 10.1109/TMTT.2012.2206825

  243. Lin Tzu-Yung, Green R. J., O'Connor P. B.: A low noise single-transistor transimpedance preamplifier for Fourier-transform mass spectrometry using a T feedback network. Review of Scientific Instruments, 2012, Vol. 83, no. 9, pp 094102 (7 pages). DOI 10.1063/1.4751851

  244. Ito Toshihiko, Okada Kenichi, Matsuzawa Akira: A wideband common-gate low-noise amplifier using capacitive feedback. IEICE Trans. on Electronics, 2012, Vol. E95-C, no. 10, pp 1666 – 1674. http://dblp.uni-trier.de/db/journals/ieicet/ieicet95c.html#ItoOM12

  245. Moezzi M., Sharif Bakhtiar M.: Wideband LNA Using Active Inductor With Multiple Feed-Forward Noise Reduction Paths. IEEE Trans. on MTT, Vol. 60, no. 4, 2012, pp. 1069 – 1078. DOI 10.1109/TMTT.2012.2185947

  246. Chang P.-Y., Su S.-H., Hsu S. S. H., Cho W.-H., Jin J.-D.: An Ultra-Low-Power Transformer-Feedback 60 GHz Low-Noise Amplifier in 90 nm CMOS. IEEE Microwave and Wireless Components Lett., Vol. 22, no. 4, 2012, pp. 197 – 199. DOI 10.1109/LMWC.2012.2187883

  247. Mao Yanfei, Schmalz K., Borngraber J., Scheytt J. C.: A 245 GHz CB LNA and SHM mixer in SiGe technology. IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2012, pp. 5 – 8. DOI 10.1109/SiRF.2012.6160120

  248. Manikandan P., Areeckal Anu Shaju: A Novel CMOS Low Noise Amplifier for UWB Application. 2nd Int. Conf. on Advanced Computing & Communication Technologies (ACCT), 2012, pp. 450 – 453. DOI 10.1109/ACCT.2012.8

  249. Shen Pei, Niu Guofu, Xu Ziyan, Zhang Wanrong: Impact of high frequency correlated noise on SiGe HBT low noise amplifier design. IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2012, pp. 125 – 128. DOI 10.1109/SiRF.2012.6160163

  250. Madan A., McPartlin M. J., Masse C., Vaillancourt W., Cressler J. D.: A 5 GHz 0.95 dB NF Highly Linear Cascode Floating-Body LNA in 180 nm SOI CMOS Technology. IEEE Microwave and Wireless Components Letters, Vol. 22, no. 4, 2012, pp. 200 – 202. DOI 10.1109/LMWC.2012.2187882

  251. Liu Gang, Trasser A., Schumacher H.: A 64 to 81 GHz PLL with low phase noise in an 80 GHz SiGe HBT technology. IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2012, pp. 171 – 174. DOI 10.1109/SiRF.2012.6160133

  252. Raczkowski K., Thijs S., Tseng Jen-Chou, Chang Tzu-Heng, Song Ming-Hsiang, Linten D., Nauwelaers B., Wambacq P.: 60 GHz low noise amplifiers with 1 kV CDM protection in 40 nm LP CMOS. IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2012, pp. 9 – 12. DOI 10.1109/SiRF.2012.6160126

  253. El-Nozahi M., Helmy A. A., Sanchez-Sinencio E., Entesari K.: An Inductorless Noise-Cancelling Broadband Low Noise Amplifier with Composite Transistor Pair in 90 nm CMOS Technology. IEEE J. Solid State Circuits, Vol. 46, no. 5, 2011, pp. 1111 – 1122. DOI 10.1109/JSSC.2011.2118310

  254. G. Moschetti, N. Wadefalk, P.-Ĺ. Nilsson, M. Abbasi, L. Desplanque, X. Wallart, J. Grahn: Cryogenic InAs/AlSb HEMT Wideband Low-Noise IF Amplifier for Ultra-Low-Power Applications. IEEE Microwave & Wireless Comp. Lett., Vol. 22, no. 3, 2011, pp. 144 – 146. DOI 10.1109/LMWC.2011.2182637

  255. Ulansky V.V.: Low phase-noise HEMT microwave voltage-controlled oscillator. IEEE Microwaves, Radar and Remote Sensing Symp. (MRRS), 2011, pp. 55 – 58. DOI 10.1109/MRRS.2011.6053600

  256. Weinreb S., Akgiray A., Russell D.: Wideband feeds and low noise amplifiers for large arrays. XXXth URSI General Assembly and Scientific Symp., 2011, pp. 1 – 3. DOI 10.1109/URSIGASS.2011.6051201

  257. Miri M.S., Ghahramani J., Farrokh M.S., Rezakhani S., Kordalivand A.M.: Design and simulation of HBT differential Low Noise Amplifier and LC active filter. IEEE Int. Conf on System Eng. and Technology (ICSET), 2011, pp. 70 – 73. DOI 10.1109/ICSEngT.2011.5993423

  258. Kobayashi K.W.: An 8-Watt 250-3000 MHz Low Noise GaN MMIC Feedback Amplifier with > +50 dBm OIP3. IEEE Compound Semiconductor IC Symp. (CSICS), 2011, pp.1 – 4. DOI 10.1109/CSICS.2011.6062481

  259. Diddi V., Srivastava K.V., Biswas A.: A 6 mW low noise amplifier for 3.1–10.6 GHz UWB application. Nat. Conf on Communications (NCC), 2011, pp. 1 – 4. DOI 10.1109/NCC.2011.5734714

  260. Wang H., Zhang L., Yu Z.: A Wideband Inductorless LNA with Local Feedback and Noise Canceling for Low-Power Low-Voltage Applications. IEEE Trans on CAS I: Regular Papers, Vol. 57, no. 8, 2010, pp. 1993 – 2005. DOI 10.1109/TCSI.2010.2042997

  261. Kishishita T, Sato G, Ikeda H, Takahashi T, Kiyuna T, Mito Y: Low-Noise Analog ASIC for Silicon and CdTe Sensors. IEEE Trans on Nuclear Science, Vol. 57, no 5 part 3, 2010, pp 2971 – 2977. DOI 10.1109/TNS.2010.2063038

  262. Fang X C, Hu-Guo Ch, Ollivier-Henry N, Brasse D, Hu Y.: Design of a Multi-Channel Front-End Readout ASIC With Low Noise and Large Dynamic Input Range for APD-Based PET Imaging. IEEE Trans on Nuclear Science, Vol. 57, no 3 part 1, 2010, pp 1015 – 1022. DOI 10.1109/TNS.2010.2047404

  263. Pullia A., Zocca F., Riboldi S., Budjas D., D'Andragora A., Cattadori C.: Cryogenic Performance of a Low-Noise JFET-CMOS Preamplifier for HPGe Detectors. IEEE Trans on Nuclear Science, Vol. 57, no 2 part 2, 2010, pp 737 – 742. DOI 10.1109/TNS.2009.2038697 

  264. Ciofi C, Scandurra G, Cannata G: A New Circuit Topology for the Realization of Very Low Noise, High Stability Voltage Sources. IEEE Trans on Instr. & Meas., Vol. 59, no 10, 2010, pp 2724 – 2731. DOI 10.1109/TIM.2010.2045260

  265. Zito D., Fonte A.: Dual-Input Pseudo-Switch RF Low Noise Amplifier. IEEE Trans on CAS II: Express Briefs, Vol. 57, no 9, 2010, pp 661 – 665. DOI 10.1109/TCSII.2010.2058491

  266. Hasan S.M.R.: Analysis and Design of a Multistage CMOS Band-Pass Low-Noise Preamplifier for Ultrawideband RF Receiver. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 4, 2010, pp. 638 – 651. DOI 10.1109/TVLSI.2009.2014166

  267. Serban A., Karlsson M., Shaofang Gong: Component Tolerance Effect on Ultra-Wideband Low-Noise Amplifier Performance. IEEE Trans. on Advanced Packaging, vol. 33, no. 3, 2010, pp. 660 – 668. DOI 10.1109/TADVP.2010.2041348

  268. Reja Md M, Moez K, Filanovsky I.: An Area-Efficient Multistage 3.0- to 8.5-GHz CMOS UWB LNA Using Tunable Active Inductors. IEEE Trans on CAS II: Express Briefs, Vol. 57, no 8, 2010, pp 587 – 591. DOI 10.1109/TCSII.2010.2055990

  269. Kuang-Chi He, Ming-Tsung Li, Chen-Ming Li, Jenn-Hwan Tarng: Parallel-RC Feedback Low-Noise Amplifier for UWB Applications. IEEE Trans on CAS II: Express Briefs, Vol. 57, no 8, 2010, pp 582 – 586. DOI 10.1109/TCSII.2010.2050943

  270. Donggu Im, Ilku Nam, Kwyro Lee: A Low Power Broadband Differential Low Noise Amplifier Employing Noise and IM3 Distortion Cancellation for Mobile Broadcast Receivers. IEEE Microwave and Wireless Components Letters, Vol. 20, no 10, 2010, pp 566 – 568. DOI 10.1109/LMWC.2010.2061839

  271. Mingqi Chen, Sutton W, Smorchkova I, Heying B, Wen-Ben Luo, Gambin V, Oshita F, Tsai R, Wojtowicz M, Kagiwada R, Oki A, Jenshan Lin: A 1–25 GHz GaN HEMT MMIC Low-Noise Amplifier. IEEE Microwave and Wireless Components Letters, Vol. 20, no 10, 2010, pp 563 – 565. DOI 10.1109/LMWC.2010.2059002

  272. Kyoung-Pyo Ahn, Ishikawa Ryo, Honjo Kazuhiko: Low Noise Group Delay Equalization Technique for UWB InGaP/GaAs HBT LNA. IEEE Microwave and Wireless Components Letters, Vol. 20, no 7, 2010, pp 405 – 407. DOI 10.1109/LMWC.2010.2049441

  273. Hui-I Wu, Hu R., Jou C.F.: Complementary UWB LNA Design Using Asymmetrical Inductive Source Degeneration. IEEE Microwave and Wireless Components Letters, Vol. 20, no 7, 2010, pp 402 – 404. DOI 10.1109/LMWC.2010.2049440

  274. Yu-Hsiang Wang, Kuan-Ting Lin, Tao Wang, Hung-Wei Chiu, Hsiao-Chin Chen, Shey-Shi Lu: A 2.1 to 6 GHz Tunable-band LNA With Adaptive Frequency Responses by Transistor Size Scaling. IEEE Microwave and Wireless Components Letters, Vol. 20, no 6, 2010, pp 346 – 348. DOI 10.1109/LMWC.2010.2047527

  275. Qiang-Tao Lai, Jun-Fa Mao: A 0.5–11 GHz CMOS Low Noise Amplifier Using Dual-Channel Shunt Technique. IEEE Microwave and Wireless Components Letters, Vol. 20, no 5, 2010, pp 280 – 282. DOI 10.1109/LMWC.2010.2045592

  276. Bonghyuk Park, Sangsung Choi, Songcheol Hong: A Low-Noise Amplifier With Tunable Interference Rejection for 3.1- to 10.6-GHz UWB Systems. IEEE Microwave and Wireless Components Letters, Vol. 20, no 1, 2010, pp 40 – 42. DOI 10.1109/LMWC.2009.2035963

  277. Lee H D, Yun S-J, Kim K-D, Kwon J-K: Low-noise wideband PLL with dual-mode ring-VCO. Electronics Lett., Vol. 46, no 20, 2010, pp 1368 – 1370. DOI 10.1049/el.2010.2028

  278. Wang C.-H, Chiu Y.-T, Lin Y.-S: 3.1 dB NF 20-29 GHz CMOS UWB LNA using a T-match input network. Electronics Lett., Vol. 46, no 19, 2010, pp 1312 – 1313. DOI 10.1049/el.2010.2121

  279. Lee J.-H, Chen C.-C, Lin Y.-S: 3.7 mW 24 GHz LNA with 10.1 dB gain and 4.5 dB NF in 0.18 μm CMOS technology. Electronics Lett., Vol. 46, no 19, 2010, pp 1310 – 1312. DOI 10.1049/el.2010.1983

  280. C.-P. Liang, C.-W. Huang, Y.-K. Lin, S.-J. Chung: 3–10 GHz ultra-wideband low-noise amplifier with new matching technique. Electronics Lett., Vol. 46, no 16, 2010, pp 1102 – 1103. DOI 10.1049/el.2010.1279

  281. Grop S., Bourgeois P-Y, Boudot R, Kersale Y, Rubiola E, Giordano V: 10 GHz cryocooled sapphire oscillator with extremely low phase noise. Electronics Lett., Vol. 46, no 6, 2010, pp 420 – 422. DOI 10.1049/el.2010.0263

  282. Chen A Y.-K., Baeyens Y, Chen Y.-K., Lin J.: 21 dB gain 87GHz low-noise amplifier using 0.18μm SiGe BiCMOS. Electronics Lett., Vol. 46, no 5, 2010, pp 332 – 333. DOI 10.1049/el.2010.0155

  283. Ciccognani W.; Limiti E., Longhi P., Renvoise M.: MMIC LNAs for Radioastronomy Applications Using Advanced Industrial 70 nm Metamorphic Technology. IEEE J. of SSC, Vol. 45, no 10, 2010, pp 2008 – 2015. DOI 10.1109/JSSC.2010.2058170

  284. El-Nozahi M., Sanchez-Sinencio E., Entesari K.: A Millimeter-Wave (23–32 GHz) Wideband BiCMOS Low-Noise Amplifier. IEEE J. of SSC, Vol. 45, no 2, 2010, pp 289 – 299. DOI 10.1109/JSSC.2009.2038126

  285. Ho Stanley S. K., Saavedra C. E.: A CMOS Broadband Low-Noise Mixer With Noise Cancellation. IEEE Trans on MTT, Vol. 58, no 5, 2010, pp 1126 – 1132. DOI 10.1109/TMTT.2010.2045568

  286. Nick M., Mortazawi A.: Low Phase-Noise Planar Oscillators Based on Low-Noise Active Resonators. IEEE Trans on MTT, Vol. 58, no 5, 2010, pp 1133 – 1139. DOI 10.1109/TMTT.2010.2045572

  287. Chang-Tsung Fu, Chien-Nan Kuo, Taylor S. S.: Low-Noise Amplifier Design With Dual Reactive Feedback for Broadband Simultaneous Noise and Impedance Matching. IEEE Trans on MTT, Vol. 58, no 4, 2010, pp 795 – 806. DOI 10.1109/TMTT.2010.2041570

  288. Sato M., Takahashi T., Hirose T.: 68–110-GHz-Band Low-Noise Amplifier Using Current Reuse Topology. IEEE Trans on MTT, Vol. 58, no 7, 2010, pp 1910 – 1916. DOI 10.1109/TMTT.2010.2050374

  289. Ro-Min Weng, Chun-Yu Liu, Po-Cheng Lin: A Low-Power Full-Band Low-Noise Amplifier for Ultra-Wideband Receivers. IEEE Trans on MTT, Vol. 58, no 8, 2010, pp 2077 – 2083. DOI 10.1109/TMTT.2010.2052404

  290. Victor A., Nath J.: An analytic technique for trade-off of noise measure and mismatch loss for low noise amplifier design. 2010 IEEE 11th Annual Wireless and Microwave Technology Conference (WAMICON), 2010, pp.1 – 4. DOI 10.1109/WAMICON.2010.5461878

  291. Jusung Kim, Hoyos S., Silva-Martinez J.: Wideband Common-Gate CMOS LNA Employing Dual Negative Feedback With Simultaneous Noise, Gain, and Bandwidth Optimization. IEEE Trans on MTT, Vol. 58, no 9, 2010, pp 2340 – 2351. DOI 10.1109/TMTT.2010.2057790

  292. Fahimnia M., Mohammad-Taheri M., Wang Y., Yu M., Safavi-Naeini S.: An efficient method to design optimum millimeter wave low noise amplifier. 2010 IEEE Antennas and Propagation Society Int. Symp. (APSURSI), 2010, pp. 1 – 4. DOI 10.1109/APS.2010.5562291

  293. Wang Xiao-mei, Sun Zhengwen, Chen Yong, Wang Sixiu: Design of X-band low-noise amplifier for optimum matching between noise and power. 2010 2nd Int. Conf. on Education Technology and Computer (ICETC), vol. 5, 2010, pp. V5-184 – V5-188. DOI 10.1109/ICETC.2010.5529786

  294. Im D., Nam I., Kim H.T., Lee K.: A Wideband CMOS Low Noise Amplifier Employing Noise and IM2 Distortion Cancelation for a Digital TV Tuner. IEEE J. Solid-State Circuits, Vol. 44, no. 3, 2009, pp. 686 – 698. DOI 10.1109/JSSC.2008.2010804

  295. Heng Zhang, Xiaohua Fan, E. Sánchez-Sinencio: A Low-Power, Linearized, Ultra-Wideband LNA Design Technique. IEEE Journal of SSC, Vol. 44, no. 2, pp. 320-330, 2009 DOI 10.1109/JSSC.2008.2011033

  296. Yuan-Wen Hsiao, Ming-Dou Ker: A 5-GHz Differential Low-Noise Amplifier With High Pin-to-Pin ESD Robustness in a 130-nm CMOS Process. IEEE Trans on MTT, Vol. 57, no 5, part 1, 2009, pp 1044 – 1053. DOI 10.1109/TMTT.2009.2017247

  297. El-Nozahi M., Sanchez-Sinencio E., Entesari K.: A CMOS Low-Noise Amplifier With Reconfigurable Input Matching Network. IEEE Trans on MTT, Vol. 57, no 5, part 1, 2009, pp 1054 – 1062. DOI 10.1109/TMTT.2009.2017249

  298. Liu J., Liao H., Huang R.: 0.5 V ultra-low power wideband LNA with forward body bias technique. Electronics Lett., Vol. 45, no 6, 2009, pp 289 – 290. DOI 10.1049/el.2009.3150

  299. Geddada H.M., Park J.W., Silva-Martinez J.: Robust derivative superposition method for linearising broadband LNAs. Electronics Lett., Vol. 45, no 9, 2009, pp 435 – 436. DOI 10.1049/el.2009.3168

  300. Jung D.Y., Lee J.J., Park C.S.: Low-power and low NF V-band down-converter in 0.13 μm CMOS. Electronics Lett., Vol. 45, no 10, 2009, pp 509 – 510. DOI 10.1049/el.2009.0833

  301. Nam I., Moon H., Kwon K.: Highly linear and low noise differential bipolar MOSFET down-converter in CMOS process. Electronics Lett., Vol. 45, no 11, 2009, pp 548– 550. DOI 10.1049/el.2009.3676

  302. Chang J.-F., Lin Y.-S.: Low-power, high-gain and low-noise CMOS distributed amplifier for UWB systems. Electronics Lett., Vol. 45, no 12, 2009, pp 634– 636. DOI 10.1049/el.2009.0354

  303. Kishine K., Inaba H., Nakamura M., Nakamura M., Ohtomo Y., Onodera H.: Low-jitter design method based on Wn-domain jitter analysis for 10 Gbit/s clock and data recovery ICs. Electronics Lett., Vol. 45, no 16, 2009, pp 808– 809. DOI 10.1049/el.2009.0717

  304. Sasidhar N., Inti R., Hanumolu P.K.: Low-noise self-referenced CMOS oscillator. Electronics Lett., Vol. 45, no 18, 2009, pp 920– 921. DOI 10.1049/el.2009.1342

  305. Kunze J.W., Weyers C., Mayr P., Bilgic A., Hausner J.: 60 GHz compact low noise amplifier in 65 nm CMOS. Electronics Lett., Vol. 45, no 20, 2009, pp 1035– 1036. DOI 10.1049/el.2009.0518

  306. Hung C.-M., Barton N.: Low phase noise wide tuning range digitally-controlled LC oscillator using switchable inductor. Electronics Lett., Vol. 45, no 17, 2009, pp 890– 892. DOI 10.1049/el.2009.0660

  307. Guillot P., Philippe P., Berland C., Bercher J.-F., Gamand P.: Low-noise high-resolution BAW-based high-frequency oscillator. Electronics Lett., Vol. 45, no 17, 2009, pp 914– 916. DOI 10.1049/el.2009.1779

  308. Bo-Jr Huang, Chi-Hsueh Wang, Chung-Chun Chen, Ming-Fong Lei, Pin-Cheng Huang, Kun-You Lin, Huei Wang: Design and Analysis for a 60-GHz Low-Noise Amplifier With RF ESD Protection. IEEE Trans on MTT, Vol. 57, no 2, 2009, pp 298 – 305. DOI 10.1109/TMTT.2008.2011158

  309. Rudolph M., Chaturvedi N., Hirche K., Wurfl J., Heinrich W., Trankle G.: Highly Rugged 30 GHz GaN Low-Noise Amplifiers. IEEE Microwave and Wireless Components Letters, Vol. 19, no 4, 2009, pp 251 – 253. DOI 10.1109/LMWC.2009.2015514

  310. Bardin J.C., Weinreb S.: A 0.1–5 GHz Cryogenic SiGe MMIC LNA. IEEE Microwave and Wireless Components Letters, Vol. 19, no 6, 2009, pp 407 – 409. DOI 10.1109/LMWC.2009.2020041

  311. Yu-Lin Wei, Shawn Hsu S.S.H., Jun-De Jin: A Low-Power Low-Noise Amplifier for K-Band Applications. IEEE Microwave and Wireless Components Letters, Vol. 19, no 2, 2009, pp 116 – 118. DOI 10.1109/LMWC.2008.2011340

  312. Osmany S.A., Herzel F., Scheytt J.C., Schmalz K., Winkler W.: Integrated 22 GHz low-phase-noise VCO with digital tuning in SiGe BiCMOS technology. Electronics Lett., Vol. 45, no 1, 2009, pp 39 – 40. DOI 10.1049/el:20092924

  313. Dazhen Gu, Walker D.K., Randa J.: Variable Termination Unit for Noise-Parameter Measurement. IEEE Trans on Instr. & Meas., Vol. 58, no 4, 2009, pp 1072 – 1077. DOI 10.1109/TIM.2008.2007055

  314. Rizk M.R.M., Nasar, M., Hafez A.: Optimum Design for Ultra Wideband Two Stage Low Noise Amplifier (UWBLNA). 2009 National Radio Science Conference (NRSC 2009), 2009, pp. 1 – 7. Print ISBN: 978-1-4244-4214-0

  315. Jinhua Liu, Guican Chen, Ruizhi Zhang: Design of a noise-canceling differential CMOS LNA for 3.1–10.6 GHz UWB receivers. IEEE 8th Int. Conf. on ASIC (ASICON '09), 2009, pp. 1169 – 1172. DOI 10.1109/ASICON.2009.5351170

  316. Boudot R., Guerandel S., de Clercq E.: Simple-Design Low-Noise NLTL-Based Frequency Synthesizers for a CPT Cs Clock. IEEE Trans on Instr. & Meas., Vol. 58, no 10, 2009, pp 3659 – 3665. DOI 10.1109/TIM.2009.2019306

  317. Hsieh H.-H., Lu L.-H.: A 40-GHz Low-Noise Amplifier With a Positive-Feedback Network in 0.18-µm CMOS. IEEE Trans on MTT, Vol. 57, no 8, 2009, pp 1895 – 1902. DOI 10.1109/TMTT.2009.2025418

  318. Yang Hou, Ruming Wen, Lingyun Li, Hengrong Cui, Rong Qian, Xiaowei Sun: Analysis and optimum design of impedance matching for Ka-Band cryogenic low noise amplifiers. Asia Pacific Microwave Conf. (APMC 2009), 2009, pp. 1593 – 1596. DOI 10.1109/APMC.2009.5384378

  319. Winstead C., El Hamoui M.: Reducing clock jitter by using Muller-C elements. Electronics Lett., Vol. 45, no 3, 2009, pp 150 – 151. DOI 10.1049/el:20093196

  320. Chen W.-H., Liu G., Zdravko B., Niknejad A.:A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancelation. IEEE J. Solid-State Circuits, Vol. 43, no. 5, 2008, pp. 1164 1176. DOI 10.1109/JSSC.2008.920335

  321. Blaakmeer S., Klumperink E., Leenaerts D., Nauta B.: Wide-Band Balun-LNA with Simultaneous Output Balancing, Noise-Cancelling and Distortion-Canceling. IEEE J. Solid-State Circuits, Vol. 43, no. 6, 2008, pp. 1341 1350. DOI 10.1109/JSSC.2008.922736

  322. Jussila J., Sivonen P.: A 1.2-V highly linear balanced Noise-Cancelling LNA in 0.13-μm CMOS. IEEE J. Solid-State Circuits, Vol. 43, no. 3, 2008, pp. 579 – 587. DOI 10.1109/JSSC.2007.916582

  323. Banerjee G., Soumyanatah K., Allstot D.J.: Desensitized CMOS low-noise amplifiers. IEEE Trans on CAS I, Vol. 55, no 3, March 2008, pp 752 – 765. DOI 10.1109/TCSI.2008.916405

  324. Xiaohua Fan, Heng Zhang, E. Sánchez-Sinencio: A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA. IEEE Journal of SSC, Vol. 43, no. 3, pp. 588-599, 2008 DOI 10.1109/JSSC.2007.916584

  325. Perumana B.G., Zhan J.-H.C., Taylor S.S., Carlton B.R., Laskar, J.: Resistive-feedback CMOS low-noise amplifiers for multiband applications. IEEE Trans on MTT, Vol. 56, no 5, 2008, pp 1218 – 1225. DOI 10.1109/TMTT.2008.920181

  326. Yen-Chih Huang, Hsieh-Hung Hsieh, Liang-Hung Lu: A build-in self-test technique for RF low-noise amplifiers. IEEE Trans on MTT, Vol. 56, no 5, part 1, 2008, pp 1035 – 1042. DOI 10.1109/TMTT.2008.921293

  327. Do A.V., Chirn Chye Boon, Do M.A., Kiat Seng Yeo, Cabuk A.: A Subthreshold Low-Noise Amplifier Optimized for Ultra-Low-Power Applications in the ISM Band. IEEE Trans on MTT, Vol. 56, no 2, 2008, pp 286 – 292. DOI 10.1109/TMTT.2007.913366

  328. Byoungjoong Kang, Sung-Gi Yang, Jinhyuck Yu, Wooseung Choo, Byeong-Ha Park: Design and analysis of a high-performance cascode bipolar low noise amplifier with shunt feedback capacitor. IEEE Radio Frequency Integrated Circuits Symposium, RFIC 2008, Atlanta, GA , pp 613 – 616. DOI 10.1109/RFIC.2008.4561512

  329. Chang-Tsung Fu, Chun-Lin Ko, Chien-Nan Kuo, Ying-Zong Juang: A 2.4-5.4-GHz wide tuning-range CMOS reconfigurable low-noise amplifier. IEEE Trans on MTT, Vol. 56, no 12, 2008, pp 2754 – 2763. DOI 10.1109/TMTT.2008.2006804 

  330. Ming-Ching Kuo, Chien-Nan Kuo, Tzu-Chan Chueh: Wideband LNA Compatible for Differential and Single-Ended Inputs. IEEE Microwave and Wireless Components Letters, Vol. 19, no 7, 2008, pp 482 – 484. DOI 10.1109/LMWC.2009.2022142

  331. Byung-Wook Min, Rebeiz G.M.: Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA. IEEE Microwave and Wireless Components Letters, Vol. 18, no 4, 2008, pp 272 – 274. DOI 10.1109/LMWC.2008.918917

  332. Thrivikraman T.K., Jiahui Yuan, Bardin J.C., Mani H., Phillips S.D., Kuo W.-M.L., Cressler J.D., Weinreb S.: SiGe HBT X-Band LNAs for Ultra-Low-Noise Cryogenic Receivers. IEEE Microwave and Wireless Components Letters, Vol. 18, no 7, 2008, pp 476 – 478. DOI 10.1109/LMWC.2008.925104

  333. Tienyu Chang, Jinghong Chen, Rigge L., Jenshan Lin: A Packaged and ESD-Protected Inductorless 0.1–8 GHz Wideband CMOS LNA. IEEE Microwave and Wireless Components Letters, Vol. 18, no 6, 2008, pp 416 – 418. DOI 10.1109/LMWC.2008.922677

  334. Tirado-Mendez A., Jardon-Aguilar H.: Current source load for HBT low-noise-amplifier linearisation at 1.8 GHz. Electronics Lett., Vol. 44, no 2, 2008, pp 68 – 69. DOI 10.1049/el:20083237

  335. L. Belostotski, J.W. Haslett: Two-Port Noise Figure Optimization of Source-Degenerated Cascode CMOS LNAs. Analog Integrated Circuits and Signal Processing, Springer, Vol. 55, no. 2, 2008, pp. 125 – 137. DOI 10.1007/s10470-008-9142-4

  336. Gil I., Cairo I., Sieiro J.J.: Low-power single-to-differential LNA at S-band based on optimised transformer topology and integrated ESD. Electronics Lett., Vol. 44, no 3, 2008, pp 198 – 199. DOI 10.1049/el:20082898

  337. Zhe-Yang Huang, Che-Cheng Huang, Yeh-Tai Hung, Meng-Ping Chen: A CMOS current reused low-noise amplifier for ultra-wideband wireless receiver. Int. Conf. on Microwave and Millimeter Wave Technology, (ICMMT 2008), vol. 3, 2008, pp. 1499 – 1502. DOI 10.1109/ICMMT.2008.4540731

  338. Zhe-Yang Huang, Che-Cheng Huang, Meng-Ping Chen, Yeh-Tai Hung: Design considerations on input impedance matching for ultra-wideband low-noise amplifier. Int. Conf. on Microwave and Millimeter Wave Technology, (ICMMT 2008), vol. 1, pp. 245 – 248., 2008 DOI 10.1109/ICMMT.2008.4540352

  339. Jeong M.l., Lee J.N., Lee C.S.: Design of UWB switched gain controlled LNA using 0.18 μm CMOS. Electronics Lett., Vol. 44, no 7, 2008, pp 477 – 478. DOI 10.1049/el:20080153

  340. Lin Y.-T., Wang T., Lu S.-S.: Fully integrated concurrent dual-band low noise amplifier with suspended inductors in SiGe 0.35 μm BiCMOS technology. Electronics Lett., Vol. 44, no 9, 2008, pp 563 – 564. DOI 10.1049/el:20080575

  341. Jung D.Y., Park C.S.: Power efficient Ka-band low phase noise VCO in 0.13 μm CMOS. Electronics Lett., Vol. 44, no 10, 2008, pp 630 – 631. DOI 10.1049/el:20080527

  342. Moon H., Nam I.: 1.3 V low close-in phase noise NMOS LC-VCO with parallel PMOS transistors. Electronics Lett., Vol. 44, no 11, 2008, pp 676 – 678. DOI 10.1049/el:20080404

  343. Lv J., Jiang Y.D., Zhang D.L., Zhou Y.: Ultra-low-noise readout integrated circuit for uncooled microbolometers. Electronics Lett., Vol. 44, no 12, 2008, pp 733 – 735. DOI 10.1049/el:20083538

  344. Nair M.U., Zheng Y.J., Lian Y.: 1 V, 0.18 μm-area and power efficient UWB LNA utilising active inductors. Electronics Lett., Vol. 44, no 19, 2008, pp 1127 – 1129. DOI 10.1049/el:20081980

  345. Moon H.: CMOS multiband low-noise amplifier using inner diameter shared inductors. Electronics Lett., Vol. 44, no 24, 2008, pp 1404 – 1405. DOI 10.1049/el:20082673

  346. Shoaib N., Ahmad M., Mahmood I.: Design, fabrication & testing of Low Noise Amplifier at Ku-Band. 2nd Int. Conf. on Advances in Space Technologies (ICAST 2008), 2008, pp. 18 – 23. DOI 10.1109/ICAST.2008.4747679

  347. Cho S.H.: Self-noise cancelling technique for voltage-controlled oscillators. Electronics Lett., Vol. 44, no 25, 2008, pp 1436 – 1434. DOI 10.1049/el:20082243

  348. Goel A., Hashemi H.: Toward a Sub-Decibel Noise Figure Broadband Monolithic LNA in Silicon. IEEE Trans on MTT, Vol. 56, no 11, part 1, 2008, pp 2389 – 2398. DOI 10.1109/TMTT.2008.2005867

  349. J. W. Haslett, L. Belostotski: Low Noise Amplifiers. In Emerging Wireless Technologies: Circuits, Systems, and Devices, editor K. Iniewski, CRC Press, Part II, 2007.

  350. Amer A., Hegazi E., Ragaie H.F.: A 90-nm Wideband Merged CMOS LNA and Mixer Exploiting Noise Cancelation. IEEE J. Solid State Circuits, Vol. 42, no. 2, 2007, pp. 323 – 328. DOI 10.1109/JSSC.2006.889374

  351. Byung-Wook Min, Rebeiz G.M.: Ka-Band SiGe HBT Low Noise Amplifier Design for Simultaneous Noise and Input Power Matching. IEEE Microwave and Wireless Components Letters, Vol. 17, no 12, 2007, pp 891 – 893. DOI 10.1109/LMWC.2007.910512

  352. L. Belostotski, J. W. Haslett: Sub-0.2 dB Noise Figure Wide-Band Room-Temperature CMOS LNA with Non-50 Signal-Source Impedance. IEEE Journal of Solid State Circuits, Vol. 42, no. 11, 2007, pp. 2492 – 2502. DOI 10.1109/JSSC.2007.907172

  353. Deal W.R., Biedenbender M., Po-Hsin Liu, Uyeda J., Siddiqui M., Lai R.: Design and Analysis of Broadband Dual-Gate Balanced Low-Noise Amplifiers. IEEE Journal of SSC, Vol. 42, no. 10, 2007, pp 2107 – 2115. DOI 10.1109/JSSC.2007.904316

  354. Martins M.A., Fernandes J.R., Silva M.M.: Dual-band CMOS low-noise amplifier without switches and with continuously adjustable gain. Electronics Lett., Vol. 43, no 17, 2007, pp 920 – 921. DOI 10.1049/el:20071540

  355. Rudolph M., Behtash R., Doerner R., Hirche K., Wurfl J., Heinrich W., Trankle G.: Analysis of the Survivability of GaN Low-Noise Amplifiers. IEEE Trans on MTT, Vol. 55, no 1, 2007, pp 37 – 43. DOI : 10.1109/TMTT.2006.886907

  356. El Kaamouchi M., Si Moussa M., Delatte P., Wybo G., Bens A., Raskin J.-P., Vanhoenacker-Janvier D.: A 2.4-GHz Fully Integrated ESD-Protected Low-Noise Amplifier in 130-nm PD SOI CMOS Technology. IEEE Trans on MTT, Vol. 55, no 12, part 2, 2007, pp 2822 – 2831. DOI 10.1109/TMTT.2007.909148

  357. Weinreb S., Bardin J.C., Mani H.: Design of Cryogenic SiGe Low-Noise Amplifiers. IEEE IEEE Trans on MTT, Vol. 55, no 11, 2007, pp 2306 – 2312. DOI 10.1109/TMTT.2007.907729 http://mmic.caltech.edu/reshpubindex/papers/BardinSiGeAmp.pdf

  358. Qiang Li, Yue Ping Zhang: A 1.5-V 2–9.6-GHz Inductorless Low-Noise Amplifier in 0.13-µm CMOS. IEEE Trans on MTT, Vol. 55, no 10, 2007, pp 2015 – 2023. DOI 10.1109/TMTT.2007.905495

  359. Yu-Tso Lin, Hsiao-Chin Chen, Tao Wang, Yo-Sheng Lin, Shey-Shi Lu: 3–10-GHz Ultra-Wideband Low-Noise Amplifier Utilizing Miller Effect and Inductive Shunt–Shunt Feedback Technique. IEEE Trans on MTT, Vol. 55, no 9, 2007, pp 1832 – 1843. DOI 10.1109/TMTT.2007.903836

  360. Boudot R., Bazin N., Grop S., Kersale Y., Giordano V. : Simple architecture low phase noise microwave cryogenic sapphire oscillators. Electronics Lett., Vol. 43, no 3, 2007, pp 168 – 169. http://www.femto-st.fr/~rboudot/PapiersRod/boudot07-ELL-phase-noise-cryo.pdf

  361. Lee J., Nam I., Cho S., Lee K.: Highly linear and low noise 2.4 GHz RF front-end circuits using transformer and vertical NPN BJT. Electronics Lett., Vol. 43, no 2, 2007, pp 103 – 105. DOI 10.1049/el:20072779

  362. Martineau B., Cathelin A., Danneville F., Kaiser A., Dambrine G., Lepilliet S., Gianesello F., Belot D.: 80 GHz low noise amplifiers in 65 nm CMOS SOI. Proc. of 33rd European Solid-State Circuits Conf., ESSCIRC2007, 2007, pp 348 – 351. DOI 10.1109/ESSCIRC.2007.4430315

  363. Gao Y., Zheng Y.J., Ooi B.L.: 0.18 /spl mu/m CMOS dual-band UWB LNA with interference rejection. Electronics Lett., Vol. 43, no 20, 2007, pp 1096 – 1098. DOI 10.1049/el:20072054

  364. Huang Shi-zhen, Zhu Wen-long, Lin Wei: Design of a broadband LNA for TV tuner. 7th Int. Conf. on ASIC (ASICON '07), 2007, pp. 639 – 642. DOI 10.1109/ICASIC.2007.4415712

  365. Ciofi C., Crupi F., Pace C., Scandurra G., Patane M.: A New Circuit Topology for the Realization of Very Low-Noise Wide-Bandwidth Transimpedance Amplifier. IEEE Trans on Instr. & Meas., Vol. 56, no 5, 2007, pp 1626 – 1631. DOI 10.1109/TIM.2007.904566

  366. Henkes D.D.: A Design Tool for Improving the Input Match of Low Noise Amplifiers. High Frequency Electronics, 2007, pp 54 – 64. http://www.highfrequencyelectronics.com/Archives/Feb07/HFE0207_Henkes.pdf

  367. Berceli T., Banky T., Horvath B.: Opto-electronic generation of stable and low noise microwave signals. IET Optoelectronics, Vol. 153, no 3, 2006, pp 119 – 127. DOI 10.1049/ip-opt:20050019

  368. Ciofi C., Crupi F., Pace C., Scandurra G.: How to enlarge the bandwidth without increasing the noise in OP-AMP-based transimpedance amplifier. IEEE Trans on Instr. & Meas., Vol. 55, no 3, 2006, pp 814 – 819. DOI 10.1109/TIM.2006.873782

  369. Belostotski L., Haslett J. W.: Noise figure optimization of inductively degenerated CMOS LNAs with integrated gate inductors. IEEE Trans on CAS I, vol 53, no 7, July 2006, pp 1409 – 1422. DOI 10.1109/TCSI.2006.875188

  370. Masuda S., Ohki T., Hirose T.: Very compact high-gain broadband low-noise amplifier in InP HEMT technology. IEEE Trans on MTT, Vol. 54, no 12, 2006, pp 4565 – 4571. DOI 10.1109/TMTT.2006.882873

  371. Liu M., Craninckx J., Iyer N.M., Kuijk M., Barel A.R.F.: A 6.5-kV ESD-protected 3-5-GHz ultra-wideband BiCMOS low-noise amplifier using interstage gain roll-off compensation. IEEE IEEE Trans on MTT, Vol. 54, no 4, part 2, 2006, pp 1698 – 1706. DOI 10.1109/TMTT.2006.872041

  372. Mingxu Liu, Craninckx J., Iyer N.M., Kuijk M., Barel A.R.F.: A 6.5-kV ESD-protected 3-5-GHz ultra-wideband BiCMOS low-noise amplifier using interstage gain roll-off compensation. IEEE Trans. on MTT, vol. 54, no. 4, 2006, pp. 1698 – 1706. DOI 10.1109/TMTT.2006.872041

  373. Sun K.-J. Tsai Z.-M., Lin K.-Y., Wang H.: A noise optimization formulation for CMOS low-noise amplifiers with on-chip Low-Q inductors. IEEE IEEE Trans on MTT, Vol. 54, no 4, part 1, June 2006, pp 1554 – 1560. DOI 10.1109/TMTT.2006.871365

  374. Hu R.: Wide-band matched LNA design using transistor's intrinsic gate-drain capacitor. IEEE IEEE Trans on MTT, Vol. 54, no 3, 2006, pp 1277 – 1286. DOI 10.1109/TMTT.2006.869703

  375. Ganesan S., Sanchez-Sinencio E., Silva-Martinez J.: A highly linear low-noise amplifier. IEEE Trans on MTT, Vol. 54, no 12, 2006, pp 4079 – 4085. DOI 10.1109/TMTT.2006.885889

  376. Masud M.A., Zirath H., Kelly M.: A 45-dB variable-gain low-noise MMIC amplifier. IEEE Trans on MTT, Vol. 54, no 6, 2006, pp 2848 – 2855. DOI 10.1109/TMTT.2006.875453

  377. Park Y., C.-H. Lee, Cressler J.D., Laskar J.: The analysis of UWB SiGe HBT LNA for its noise, linearity, and minimum group delay variation. IEEE IEEE Trans on MTT, Vol. 54, no 4, part 2, 2006, pp 1687 – 1697. DOI 10.1109/TMTT.2006.872000

  378. Wei-Min Lance Kuo, Krithivasan R., Xiangtao Li, Yuan Lu, Cressler J.D., Gustat H., Heinemann B.: A low-power, X-band SiGe HBT low-noise amplifier for near-space radar applications. IEEE Microwave and Wireless Components Letters, Vol. 16, no 9, 2006, pp 520 – 522. DOI 10.1109/LMWC.2006.880696

  379. Shi B., Chia Y.W.: Ultra-wideband SiGe low-noise amplifier. Electronics Lett., Vol. 42, no 8, 2006, pp 462 – 463. DOI 10.1049/el:20064413

  380. Ciccognani W., Di Paolo F., Giannini F., Limiti E., Longhi P.E., Serino A.: GaAs cryo-cooled LNA for C-band radioastronomy applications. Electronics Lett., Vol. 42, no 8, 2006, pp 471 – 472. DOI 10.1049/el:20060710

  381. Paek J.-S., Park B., Hong S.: CMOS LNA with Darlington-pair for UWB systems. Electronics Lett., Vol. 42, no 16, 2006, pp 913 – 915. DOI 10.1049/el:20061209

  382. Yen S.-H., Lin Y.-S.: Ka-band low noise amplifier using standard 0.18 /spl mu/m CMOS technology. Electronics Lett., Vol. 42, no 16, 2006, pp 919 – 920. DOI 10.1049/el:20061235

  383. Boudot R., Gruson Y., Bazin N., Rubiola E., Giordano V.: Design and measurement of low phase-noise X-band oscillator. Electronics Lett., Vol. 42, no 16, 2006, pp 929 – 931. DOI 10.1049/el:20061396

  384. Chirala M.K., Guan X., Nguyen C.: DC-20 GHz CMOS LNA using novel multilayered transmission lines and inductors. Electronics Lett., Vol. 42, no 22, 2006, pp 1273 – 1274. DOI 10.1049/el:20062569

  385. Prele D., Sou G., Klisnick G., Redon M., Breelle E., Piat M., Voisin, F.: Cryogenic SiGe Hetero-Junction Bipolar Transistors From Standard Technologies For Low Noise FLL. 13th IEEE Int. Conf. on Electronics, Circuits and Systems, (ICECS '06), 2006, pp. 525 – 528. DOI 10.1109/ICECS.2006.379841

  386. Sun K.-J., Tsai Z.-M., Lin K.-Y., Wang H.: A Noise Optimization Formulation for CMOS Low-Noise Amplifiers With On-Chip Low-Q Inductors. IEEE Trans on MTT, Vol 54, no 4, April 2006, pp 1554 – 1560. DOI 10.1109/TMTT.2006.871365

  387. Xinyan Gao, Wenkai Xie: The Optimum Design of A Broad Band Low Noise Amplifier. Joint 31st Int. Conf. on Infrared Millimeter Waves and 14th Int. Conf. on Teraherz Electronics, (IRMMW-THz 2006), 2006, pp. 92 DOI 10.1109/ICIMW.2006.368300

  388. Gaubert J., Egels M., Pannier P., Bourdel S.: Design method for broadband CMOS RF LNA. Electronics Lett., Vol. 41, no 7, 2005, pp 382 – 384. DOI 10.1049/el:20050171

  389. Kim C.-W., Jung M.-S., Lee S.-G.: Ultra-wideband CMOS low noise amplifier. Electronics Lett., Vol. 41, no 7, 2005, pp 384 – 385. DOI 10.1049/el:20058254

  390. Seo S., Pavlidis D., Moon J.S.: Wideband balanced AlGaN/GaN HEMT MMIC low noise amplifier. Electronics Lett., Vol. 41, no 16, 2005, pp 909 – 911. DOI 10.1049/el:20051461

  391. Basaran U., Tao R., Wu L., Berroth M.: Low-noise amplifier in 0.12 /spl mu/m standard CMOS technology for K-band. Electronics Lett., Vol. 41, no 10, 2005, pp 592 – 593. DOI 10.1049/el:20050237

  392. McFerran J.J., Ivanov E.N., Bartels A., Wilpers G., Oates C.W., Diddams S.A., Hollberg L.: Low-noise synthesis of microwave signals from an optical source. Electronics Lett., Vol. 41, no 11, 2005, pp 650 – 651. DOI 10.1049/el:20050505

  393. Chang C.-P., Chuang H.-R.: 0.18 /spl mu/m 3-6 GHz CMOS broadband LNA for UWB radio. Electronics Lett., Vol. 41, no 12, 2005, pp 696 – 698. DOI 10.1049/el:20057855

  394. Xu J., Serdijn W.A., Woestenburg B., Geralt bij de Vaate J.: GaAs 0.5 dB NF dual-loop negative-feedback broadband low-noise amplifier IC. Electronics Lett., Vol. 41, no 14, 2005, pp 780 – 782. DOI 10.1049/el:20051548

  395. Nguyen T.-K., Han S.-K., Lee S.-G.: Ultra-low-power 2.4 GHz image-rejection low-noise amplifier. Electronics Lett., Vol. 41, no 15, 2005, pp 842 – 843. DOI 10.1049/el:20051032

  396. Aparin V., Larson L. E.: Modified Derivative Superposition Method for Linearizing FET Low-Noise Amplifiers. IEEE Trans on MTT, vol 53, no 2, Feb 2005, pp 571 – 581. DOI 10.1109/TMTT.2004.840635

  397. Sivonen P., Parssinen A.: Analysis and optimization of packaged inductively degenerated common-source low-noise amplifiers with ESD protection. IEEE Trans on MTT, vol. 53, no. 4, 2005, pp. 1304 - 1313 DOI 10.1109/TMTT.2005.845773

  398. Han K., Gil J., Song S.-S., Han J., Shin H., Kim C.-K., Lee K.: Complete High-Frequency Thermal Noise Modeling of Short-Channel MOSFETs and Design of 5.2-GHz Low Noise Amplifier. IEEE JSSC, vol 40, no 3, Mar 2005, pp 726 – 734. DOI 10.1109/JSSC.2005.843637

  399. Eccleston K.W.: Teaching microwave amplifier design at the undergraduate level. IEEE Trans. on Education, vol. 47, no. 1, 2004, pp. 146 – 152. DOI 10.1109/TE.2003.822635

  400. Li Z., O K.K.: Packaged single-ended CMOS low noise amplifier with 2.3 dB noise figure and 64 dBm IIP/sub 2/. Electronics Lett., Vol. 40, no 12, 2004, pp 712 – 713. DOI 10.1049/el:20040459

  401. Bertuccio G., Casiraghi R., Cetronio A., Lanzieri C., Nava F.: Low-noise silicon carbide X-ray sensor with wide operating temperature range. Electronics Lett., Vol. 40, no 3, 2004, pp 173 – 174. DOI 10.1049/el:20040126

  402. Kim J.J., Lee Y., Park S.-B.: Low-noise CMOS LC oscillator with dual-ring structure. Electronics Lett., Vol. 40, no 17, 2004, pp 1031 – 1032. DOI 10.1049/el:20045030

  403. Kim B.-W., Chun Y.-H., Yun S.-W.: Varactor-tuned active bandpass filter with low noise performance. Electronics Lett., Vol. 40, no 15, 2004, pp 945 – 946. DOI 10.1049/el:20045109

  404. Bruccoleri F., Klumperink E.A.M., Nauta B.: Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE JSSC, vol. 39, no. 2, 2004, pp. 275 – 282. DOI 10.1109/JSSC.2003.821786

  405. Chung W.-Y., Yang C.-H., Pijanowska D.G., Krzyskow A., Torbicz W.: ISFET interface circuit embedded with noise rejection capability. Electronics Lett., Vol. 40, no 18, 2004, pp 1115 – 1116. DOI 10.1049/el:20045388

  406. Dafalla Z.I., David S.R., Rahman A.M.A.: Low noise amplifier design for LEO satellite applications. Proc. of 2004 Int. Conf. on Information and Communication Technologies: From Theory to Applications, 2004, pp. 325 – 326. DOI 10.1109/ICTTA.2004.1307759

  407. Lin C.-H., Su Y.-K., Juang Y.-Z., Chuang R. W., Chang S.-J., Chen J. F., Tu C.-H.: The Effect of Geometry on the Noise Characterization of SiGe HBTs and Optimized Device Sizes for the Design of Low-Noise Amplifiers. IEEE Trans on MTT, vol 52, no 9, Sept. 2004, pp 2153 – 2162. DOI 10.1109/TMTT.2004.834179

  408. Edelstein A. S., Fischer G. A., Pulskamp J., Pedersen M., Bernard W., Cheng S.F: The MEMS Flux Concentrator: A Device for Minimizing 1/f Noise in Magnetic Sensors. Proc. of IEEE Sensors, 24-27 Oct. 2004, Vol 3, pp 1562 – 1565. DOI: 10.1109/ICSENS.2004.1426488

  409. Erben U., Sonmez E.: Fully differential 5 to 6 GHz low noise amplifier using SiGe HBT technology. Electronics Lett., Vol. 40, no 1, 2004, pp 39 – 41. DOI 10.1049/el:20040018

  410. Lerdworarawee J., Nangoong W.: Low-Noise Amplifier Design for Ultrawideband Radio. IEEE Trans on Circ & Syst I, vol 51, no 6, June 2004, pp 1075 – 1087. DOI 10.1109/TCSI.2004.829305

  411. Richelli A., Colalongo L., Quarantelli M., Kovacs-Vajna Z.M.: Robust design of low EMI susceptibility CMOS OpAmp. IEEE Trans on EMC, Vol. 46, no 2, 2004, pp 291 – 298. DOI 10.1109/TEMC.2004.826874

  412. Trung-Kien Nguyen, Chung-Hwan Kim, Gook-Ju Ihm, Moon-Su Yang, Sang-Gug Lee: CMOS low-noise amplifier design optimization techniques. IEEE Trans on MTT, vol. 52, no. 5, 2004, pp. 1433 – 1442. DOI 10.1109/TMTT.2004.827014

  413. N. Wadefalk, A. Mellberg, I. Angelov, M.E. Barsky, S. Bui, E. Choumas, R.W. Grundbacher, E.L. Kollberg, R. Lai, N. Rorsman, P. Starski, J. Stenarson, D.C. Streit, H. Zirath: Cryogenic wide-band ultra-low-noise IF amplifiers operating at ultra-low DC power. IEEE Trans on MTT, Vol. 51, no. 6, 2003, pp. 1705 – 1711. DOI 10.1109/TMTT.2003.812570

  414. Gil J., Kwangseok Han, Hyungcheol Shin: 13 GHz 4.67 dB NF CMOS low-noise amplifier. Electronics Lett., Vol. 39, no 14, 2003, pp 1056 – 1058. DOI 10.1049/el:20030687

  415. Berny A. D., Niknejad A. M., Meyer R. G.: A Wideband Low-Phase-Noise CMOS VCO. Proc of the IEEE 2003 Custom Integrated Circuits Conf., 2003, pp 555 – 558. DOI 10.1109/CICC.2003.1249459, http://rfic.eecs.berkeley.edu/files/cicc_03.pdf

  416. Dambrine G., Parenty T., Bollaert S., Happy H., Cappy A., Tapani N., Orlhac J.C., Trier M., Baudet P., Landry P.: An overview of low noise devices and associated circuits for 100-200 GHz space applications. 11th European Gallium Arsenide and Other Semiconductor Applic. Symp., GAAS 2003, München, Germany, October 6-7, 2003, pp 473 – 476. http://amsacta.cib.unibo.it/523/1/G_15_05.pdf

  417. Byunghoo Jung, Gopinath A., Harjani R.: A novel noise optimization design technique for radio frequency low noise amplifiers. Proc. of the 2003 Int. Symp. on Circuits and Systems, (ISCAS '03), vol. 1, 2003, pp. I-209 – I-212. DOI 10.1109/ISCAS.2003.1205537

  418. Goo J-S., Ahn H-T., Ladwig D.J., Yu Z., Lee T.H., Dutton R.W.: A Noise Optimization Technique for Integrated Low-Noise Amplifiers. IEEE JSSC, Vol 37, no 8, Aug. 2002, 994 – 1001. DOI 10.1109/JSSC.2002.800956

  419. Qingqing Liang, Guofu Niu, Cressler J.D., Taylor S., Harame D.L.: Geometry and bias current optimization for SiGe HBT cascode low-noise amplifiers. 2002 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2002, pp. 407 – 410. DOI 10.1109/RFIC.2002.1012078

  420. Govind V., Dalmia S., Swarninathan M.: Design of an integrated low noise amplifier with embedded passives in organic substrates. Electrical Perf of Electronic Packaging, 2002, pp 67 – 70. DOI 10.1109/EPEP.2002.1057885

  421. Shcherbelis Y., Chambers D.S.G., McLernon D.C.: Microwave feed-forward low noise amplifier design for cellular base station. Electronics Lett., Vol. 37, no 6, 2001, pp 359 – 361. DOI 10.1049/el:20010242

  422. Imajuku W., Takada A., Yamabayashi Y.: Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit. Electronics Lett., Vol. 36, no 1, 6 Jan. 2000, pp 63 – 64. DOI 10.1049/el:20000032

  423. Choi B.G., Lee Y.S., Park C.S., Yoon K.S.: Super low noise C-band PHEMT MMIC low noise amplifier with minimum input matching network. Electronics Lett., Vol. 36, no 19, 14 Sept. 2000, pp 1627 – 1628. DOI 10.1049/el:20001186

  424. J. M. Tanskanen, P. Kangaslahti, H. Ahtola, P. Jukkala, T. Karttaavi, M. Lahdes, J. Varis, J. Tuovinen: Cryogenic Indium–Phosphide HEMT Low-Noise Amplifiers at V-Band. IEEE Trans on MTT, Vol. 48, no. 7, July 2000, pp 1283 – 1286. DOI 10.1109/22.853474

  425. Kyu B., Lee K.: A New Simultaneous Noise and Input Power Matching Technique for Monolithic LNA's Using Cascode Feedback. IEEE Trans on MTT, vol. 45, no. 9, Sept. 1997, pp 1627 – 1630. DOI 10.1109/22.622931

  426. Gardner P., Paul D.K.: Optimum noise measure configurations for transistor negative resistance amplifiers. IEEE Trans. on MTT, vol. 45, no. 5, 1997, pp. 580 – 586. DOI 10.1109/22.575572

  427. Shaeffer D. K., Lee T. H.: A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE J. Solid-State Circuits, Vol. SC-32, no. 5, pp. 745–759, May 1997. DOI 10.1109/4.568846 see the Corrections in the June 2005 and October 2006 issues.

  428. Van Staveren A., Verhoeven C. J. M., Van Roermund A. H. M.: The design of low-noise bandgap references. IEEE Trans. on CAS I (Fundamental Theory and Applications), Vol. 43, no. 4, 1996, pp. 290 – 300. DOI 10.1109/81.488808

  429. Olgaard C., Nielsen I.R.: Noise improvement beyond the “kT/C limit"” in low frequency C-T filters. IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol. 43, no. 8, 1996, pp. 560 – 569. DOI 10.1109/82.532002

  430. Link N. G., Gudimetla Rao V.S.: Analytical Expressions for Simplifying the Design of Broadband Low Noise Microwave Transistor Amplifiers. IEEE Trans on MTT,vol. 43, no. 10, Oct. 1995, pp 2498 – 2501. DOI 10.1109/22.466187

  431. H. Wang, D. C.-W. Lo, R. Lai, C.-C. Yang, J. Berenz: Cryogenically cooled performance of a monolithic 44-GHz InP-based HEMT low-noise amplifier. IEEE Microwave Guided Wave Lett., vol. 5, Sept. 1995, pp. 281–283. DOI 10.1109/75.410397

  432. Dos Santos J. C., Nowak S.: Design Method Improves Two-Port Noise Performance. Microwaves & RF, Aug. 1994, pp 115 – 117.

  433. Gallego J. D., Cancio A. B.: Determination of Noise Parameters of Low Noise Microwaves IF Amplifiers. Microwave Journal, Feb. 1994, pp 78 – 86.

  434. Leach W. M.: Fundamentals of Low-Noise Analog Circuit Design. Proc. IEEE, vol. 82, no. 10, Oct. 1994, pp 1514 – 1538. DOI 10.1109/5.326411

  435. Moon S. Park, R. A. Minasian: Ultra-low-noise and wide band tuned optical receiver synthesis and design. J. Lightwave Technology., Vol. LT-12, no. 2, Feb. 1994, pp. 254 – 259. DOI 10.1109/50.350596

  436. Tanzi N.: Design of broad-band, low-noise microwave transistor amplifiers with input and output VSWR constraints using CAD tools. Proc of the 37th Midwest Symp. on Circuits and Systems, vol. 2, pp. 1215 – 1219., 1994 DOI 10.1109/MWSCAS.1994.519027

  437. Liu H. C., Bor S.S., Lu P.C.: Comments on 'Optimum Noise Measure Terminations for Microwave Transistor Amplifiers'. IEEE Trans. on MTT, vol. 41, no. 2, Feb. 1993, pp 363 – 364. DOI 10.1109/22.273438

  438. Macchiarella G., Raggi A., Di Lorenzo E.: Design Criteria for Multistage Microwave Amplifiers with Match Requirements at Input and Output. IEEE Trans. on MTT, vol. 41, no. 8, Aug. 1993, pp 1294 – 1298. DOI 10.1109/22.241668

  439. Yang C.C., Nelson B.L., Allen B.R., Jones W.L., Horton J.B.: Cryogenic characteristics of wide-band pseudomorphic HEMT MMIC low-noise amplifiers. IEEE Trans. on MTT, vol. 41, no. 6, 1993, pp. 992 – 997. DOI 10.1109/22.238514

  440. Poole R.C., Paul D.: Optimum Noise Measure Terminations for Microwave Transistor Amplifiers. IEEE Trans. MTT, no. 11, Nov. 1985, pp 1254 – 1257. DOI 10.1109/TMTT.1985.1133207 see also 10.1109/22.216486

  441. Netzer Y.: The Design of Low-Noise Amplifiers. Proc. of the IEEE, vol. 69, no. 6, June 1981, pp 728 – 741. DOI 10.1109/PROC.1981.12050

  442. Tucker R. S.: Low-Noise Design of Microwave Transistor Amplifiers. IEEE Trans on MTT, vol. MTT-23, no. 8, Aug. 1975, pp 697 – 700. DOI 10.1109/TMTT.1975.1128650

  443. Faulkner E. A.: The Principles of Impedance Optimization and Noise Matching. Journal of Physics E: Scientific Instr. vol. 8, 1975, pp 533 – 540. DOI 10.1088/0022-3735/8/7/001

  444. Netzer Y.: A New Interpretation of Noise Reduction by Matching. Proc. of the IEEE, vol. 62, March 1974, pp 404 – 406. DOI 10.1109/PROC.1974.9434 See also 10.1109/PROC.1975.9811

  445. Faulkner E. A.: Optimum Design of Low-Noise Amplifiers. Electronics Lett., Vol. 2, November 1966, pp 426 – 427. DOI 10.1049/el:19660358

  446. Boglione L., Pollard R.D., Postoyalko V., Alam T.: Specifications for a Linear Network Simultaneously Noise and Available-Power Matched. IEEE Microwave and Guided Waves Lett., vol. 6, no. 11, Nov. 1966, pp 407 – 409. DOI 10.1109/75.541455


Copyright 2010 © UNESCO - All Rights Reserved.