Home
Glossary
Acronyms
Beware
Contact
 
 

AMPLIFIER NOISE

Rest, rest, perturbed spirit”

(W. Shakespeare, Cymbeline)

  1. Chen Shin-Hao, Lin Kuei-Liang, Ng Shao Siang, et al.: Embedded Single-Inductor Bipolar-Output DC-DC Converter in Class-D Amplifier for Low Common Noise. IEEE Trans on Power Electronics, Vol. 31, no. 4, 2016, pp. 3106 – 3117. DOI 10.1109/TPEL.2015.2446510

  2. Gunes F., Demirel S., Mahouti P.: A simple and efficient honey bee mating optimization approach to performance characterization of a microwave transistor for the maximum power delivery and required noise. Int. J. of Numerical Modelling - Electronic Networks Devices & Fields, Vol. 29, no. 1, 2016, pp. 4 – 20. DOI 10.1002/jnm.2041

  3. Akbari M., Shokouhifar M., Hashemipour O., Jalali A., Hassanzadeh A.: Systematic design of analog integrated circuits using ant colony algorithm based on noise optimization. Analog Integrated Circuits & Signal Processing, Vol. 86, no. 2, 2016, pp. 327 – 339. DOI 10.1007/s10470-015-0682-0

  4. Liang Jianwu, Zhou Jian, Shi Jinjing, He Guangqiang, Guo Ying: Improving Continuous-Variable Quantum Key Distribution Using the Heralded Noiseless Linear Amplifier with Source in the Middle. Int. J. of Theoretical Physics, Vol. 55, no. 2, 2016, pp. 1156 – 1166. DOI 10.1007/s10773-015-2757-1

  5. Axelsson O., Billstrom N., Rorsman N., Thorsell M.: Impact of Trapping Effects on the Recovery Time of GaN Based Low Noise Amplifiers. IEEE Microwave & Wireless Comp. Lett., Vol. 26, no. 1, 2016, pp. 31 – 33. DOI 10.1109/LMWC.2015.2505641

  6. Boerzsoenyi A., Nagymihaly R.S., Osva K.: Drift and noise of the carrier-envelope phase in a Ti:sapphire amplifier. Laser Physics Lett., Vol. 13, no. 1, 2016, Article # 015301. DOI 10.1088/1612-2011/13/1/015301

  7. Karimlou A., Jafarnejad R., Sobhi J.: An Inductor-less Sub-mW Low Noise Amplifier for Wireless Sensor Network Applications. Integration - the VLSI Journal, Vol. 52, 2016, pp. 316 – 322. DOI 10.1016/j.vlsi.2015.07.009

  8. Lioliou G., Barnett A.M.: Electronic noise in charge sensitive preamplifiers for X-ray spectroscopy and the benefits of a SiC input JFET. Nuclear Instruments & Methods in Physics Research: Section A - Accelerators Spectrometers Detectors & Associated Equipment, Vol. 801, 2015, pp. 63 – 72. DOI 10.1016/j.nima.2015.08.042

  9. Worapishet A., Demosthenous A.: Generalized Analysis of Random Common-Mode Rejection Performance of CMOS Current Feedback Instrumentation Amplifiers. IEEE Trans on CAS I : Regular Papers, Vol. 62, no. 9, 2015, pp. 2137 – 2146. DOI 10.1109/TCSI.2015.2411794

  10. Haiyang Zhu, Kapusta R., Yong-Bin Kim: Noise Reduction Technique Through Bandwidth Switching for Switched-Capacitor Amplifier. IEEE Trans on CAS I : Regular Papers, Vol. 62, no. 7, 2015, pp. 1707 – 1715. DOI 10.1109/TCSI.2015.2446540

  11. Mazzucato S., Carrère H., Marie X., Amand T., Achouche M., Caillaud C., Brenot R.: Gain, amplified spontaneous emission and noise figure of bulk InGaAs/InGaAsP/InP semiconductor optical amplifiers. IET Optoelectronics, Vol. 9, no. 2, 2015, pp. 52 – 60. DOI 10.1049/iet-opt.2014.0064

  12. Kochetov B.A., Fedorov A.: Higher-order nonlinear effects in a Josephson parametric amplifier. Physical Review B, Vol. 92, no. 22, 2015, Article # 224304. DOI 10.1103/PhysRevB.92.224304

  13. Macklin C., O'Brien K., Hover D., et al.: A near-quantum-limited Josephson traveling-wave parametric amplifier. Science, Vol. 350, no. 6258, 2015, pp. 307 – 310. DOI 10.1126/science.aaa8525

  14. Zhong Ying-Hui, Li Kai-Kai, Li Xin-Jian, Jin Zhi: A W-band high-gain and low-noise amplifier MMIC using InP-based HEMTs. Journal of Infrared and Millimeter Waves, Vol. 34, no. 6, 2015, pp. 668 – 672. DOI 10.11972/j.issn.1001-9014.2015.06.006

  15. Yang F., Wang Z.X., Meng H.F., Dou W.B.: 1/f-Noise Analysis in Passive Millimeter Wave Imaging Front End Using Zero Biased Detector. Journal of Infrared Millimeter and Terahertz Waves, Vol. 36, no. 12, 2015, pp. 1176 – 1181. DOI 10.1007/s10762-015-0214-0

  16. Ma Ming-jun, Jin Zhong-he, Liu Yi-dong, Ma Tie-ying: Noise behaviors of a closed-loop micro-electromechanical system capacitive accelerometer. Journal of Central South University, Vol. 22, no. 12, 2015, pp. 4634 – 4644. DOI 10.1007/s11771-015-3014-8

  17. Mrad R., Pillonnet G., Morel F., Vollaire C., Nagari A.: Predicting the Impact of Magnetic Components Used for EMI Suppression on the Base-Band of a Power Amplifier. IEEE Trans on Power Electronics, Vol. 30, no. 8, 2015, pp. 4199 – 4208. DOI 10.1109/TPEL.2014.2351421

  18. Kim Jooseung, Kim Dongsu, Cho Yunsung, et al.: Analysis of Far-Out Spurious Noise and its Reduction in Envelope-Tracking Power Amplifier. IEEE Trans on MTT, Vol. 63, no. 12, Part 1, 2015, pp. 4072 – 4082. DOI 10.1109/TMTT.2015.2495178

  19. Lee Juri, Park Hyung Gu, Kim In Seong, et al.: A 6 Gb/s Low Power Transimpedance Amplifier with Inductor Peaking and Gain Control for 4-channel Passive Optical Network in 0.13 mu m CMOS. Journal of Semiconductor Technology and Science, Vol. 15, no. 1, 2015, pp. 122 – 130. DOI 10.5573/JSTS.2015.15.1.122

  20. Mitrofanov V.P, Chao Shiuh, Pan Huang-Wei, et al.: Technology for the next gravitational wave detectors. Science China-Physics Mechanics & Astronomy, Vol. 58, no. 12, 2015, Article # 120404. DOI 10.1007/s11433-015-5738-8

  21. Franson J.D., Kirby B.T.: Origin of quantum noise and decoherence in distributed amplifiers. Physical Review A, Vol. 92, no. 5, 2015, Article # 053825. DOI 10.1103/PhysRevA.92.053825

  22. Zhou Minchuan, Zhou Zifan, Shahriar Selim M.: Quantum noise limits in white-light-cavity-enhanced gravitational wave detectors. Physical Review D, Vol. 92, no. 8, 2015, Article # 082002. DOI 10.1103/PhysRevD.92.082002

  23. Hamerly R., Mabuchi H.: Quantum noise of free-carrier dispersion in semiconductor optical cavities. Physical Review A, Vol. 92, no. 2, 2015, Article # 023819. DOI 10.1103/PhysRevA.92.023819

  24. Niu Guofu, Ma Rongchen, Luo Lan, Cressler J.D.: Wide temperature range SiGe HBT noise parameter modeling and LNA design for extreme environment Electronics. Int. J. of Numerical Modelling - Electronic Networks Devices & Fields, Vol. 28, no. 6, SI, 2015, pp. 675 – 683. DOI 10.1002/jnm.2055

  25. Duong Quoc-Tai, Qazi F., Dabrowski J.J.: Analysis and design of low noise transconductance amplifier for selective receiver front-end. Analog Integrated Circuits & Signal Processing, Vol. 85, no. 2, SI, 2015, pp. 361 – 372. DOI 10.1007/s10470-015-0629-5

  26. Huang Chien-Chang, Guu G. Changlin: CMOS low noise amplifier designs for 5.8 GHz dedicated short-range communications applications. Microwave & Optical Techn. Lett., Vol. 57, no. 11, 2015, pp. 2524 – 2529. DOI 10.1002/mop.29368

  27. Song Ickhyun, Cho Moon-Kyu, Jung Seungwoo, et al.: Advantages of utilizing through-silicon-vias in SiGe HBT RF low-noise amplifier design. Microwave & Optical Techn. Lett., Vol. 57, no. 11, 2015, pp. 2703 – 2706. DOI 10.1002/mop.29412

  28. Shim Jaemin, Jeong Jichai: Design of a capacitor cross-coupled dual-band LNA with switched current-reuse technique. Int. J. of Electronics, Vol. 102, no. 10, 2015, pp. 1609 – 1620. DOI 10.1080/00207217.2014.984641

  29. Gazquez P., Jose A., Fernandez Ros M., Novas Castellano N., Garcia Salvador R.M.: Techniques for Schumann Resonance Measurements: A Comparison of Four Amplifiers With a Noise Floor Estimate. IEEE Trans on Instr. & Meas., Vol. 64, no. 10, 2015, pp. 2759 – 2768. DOI 10.1109/TIM.2015.2420376

  30. de la Broise X., Bounab A.: Cryogenic ultra-low noise HEMT amplifiers board. Nuclear Instruments & Methods in Physics Research: Section A - Accelerators Spectrometers Detectors & Associated Equipment, Vol. 787, 2015, pp. 51 – 54. DOI 10.1016/j.nima.2014.11.016

  31. Zannoni M.: Millimetric LNAs for astronomy: characterization at cryogenic temperature. Int. J. of Numerical Modelling - Electronic Networks Devices & Fields, Vol. 28, no. 6, SI, 2015, pp. 745 – 754. DOI 10.1002/jnm.2069

  32. Curry M.J., England T.D., Bishop N.C., et al.: Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor. Applied Physics Letters, Vol. 106, no. 20, 2015, Article # 203505. DOI 10.1063/1.4921308

  33. Crescentini M., Thei F., Bennati M., et al.: A Distributed Amplifier System for Bilayer Lipid Membrane (BLM) Arrays With Noise and Individual Offset Cancellation. IEEE Trans. on Biomedical Circuits and Systems, Vol. 9, no. 3, 2015, pp. 334 – 344. DOI 10.1109/TBCAS.2014.2346402

  34. Harrison R.R., Kolb I., Kodandaramaiah S.B., et al.: Microchip amplifier for in vitro, in vivo, and automated whole cell patch-klamp recording. Journal of Neurophysiology, Vol. 113, no. 4, 2015, pp. 1275 – 1282. DOI 10.1152/jn.00629.2014

  35. Ngounou G.M., Kom M.: Optimization of Noise in Non-integrated Instrumentation Amplifier for the Amplification of Very Low Electrophysiological Signals. Case of Electro Cardio Graphic Signals (ECG) (Vol. 38, 152, 2014). Journal of Medical Systems, Vol. 39, no. 2, 2015, Article # 3. DOI 10.1007/s10916-015-0190-x

  36. Hsu Chung-Lun, Jiang Haowei, Venkatesh A.G., Hall D.A.: A Hybrid Semi-Digital Transimpedance Amplifier With Noise Cancellation Technique for Nanopore-Based DNA Sequencing. IEEE Trans. on Biomedical Circuits and Systems, Vol. 9, no. 5, 2015, pp. 652 – 661. DOI 10.1109/TBCAS.2015.2496232

  37. Ruiz-Amaya J., Rodriguez-Perez A., Delgado-Restituto M.: A Low Noise Amplifier for Neural Spike Recording Interfaces. Sensors, Vol. 15, no. 10, 2015, pp. 25313 – 25335. DOI 10.3390/s151025313

  38. Yang Tan, Holleman J.: An Ultralow-Power Low-Noise CMOS Biopotential Amplifier for Neural Recording. IEEE Trans on CAS II : Express Briefs, Vol. 62, no. 10, 2015, pp. 927 – 931. DOI 10.1109/TCSII.2015.2457811

  39. Li Yang-Guo, Haider M.R., Massoud Y.: A Low-Noise Biopotential Amplifier with an Optimized Noise Efficiency Factor. J. of Circuits, Systems & Computers, Vol. 24, no. 6, 2015, Article # 1550090. DOI 10.1142/S0218126615500905

  40. Chandrakumar H., Markovic D.: A Simple Area-Efficient Ripple-Rejection Technique for Chopped Biosignal Amplifiers. IEEE Trans on CAS II : Express Briefs, Vol. 62, no. 2, SI, 2015, pp. 189 – 193. DOI 10.1109/TCSII.2014.2387686

  41. Han Myungjin, Kim Boram, Chen Yi-An, et al.: Bulk Switching Instrumentation Amplifier for a High-Impedance Source in Neural Signal Recording. IEEE Trans on CAS II : Express Briefs, Vol. 62, no. 2, SI, 2015, pp. 194 – 198. DOI 10.1109/TCSII.2014.2368615

  42. Wang Tzu-Yun, Liu Li-Han, Peng Sheng-Yu: A Power-Efficient Highly Linear Reconfigurable Biopotential Sensing Amplifier Using Gate-Balanced Pseudoresistors. IEEE Trans on CAS II : Express Briefs, Vol. 62, no. 2, SI, 2015, pp. 199 – 203. DOI 10.1109/TCSII.2014.2387685

  43. Chuah Joon Huang, Holburn D.: Design of Low-Noise High-Gain CMOS Transimpedance Amplifier for Intelligent Sensing of Secondary Electrons. IEEE Sensors Journal, Vol. 15, no. 10, 2015, pp. 5997 – 6004. DOI 10.1109/JSEN.2015.2452934

  44. Namiki Ryo: Amplification uncertainty relation for probabilistic amplifiers. Physical Review A, Vol. 92, no. 3, 2015, Article # 032326. DOI 10.1103/PhysRevA.92.032326

  45. Dobes J., Michal J., Popp J., et al.: Precise Characterization and Multiobjective Optimization of Low Noise Amplifiers. RadioEngineering, Vol. 24, no. 3, 2015, pp. 670 – 680.

  46. Akiba Makoto: Theory and Measurement of Reset Noise Suppression in CTIA Readout Circuits. IEICE Trans on Electronics, Vol. E98C, no. 8, 2015, pp. 899 – 902. DOI 10.1587/transele.E98.C.899

  47. Park Hyun-Woo, Ham Sun-Jun, Lai Ngoc-Duy-Hien, Kim Nam-Yoon, Kim Chang-Woo, Yoon Sang-Woong: An Wideband GaN Low Noise Amplifier in a 3x3 mm2 Quad Flat Non-leaded Package. J. of Semiconductor Technology & Science, Vol. 15, no. 2, 2015, pp. 301 – 306. DOI 10.5573/JSTS.2015.15.2.301

  48. Rastegar H., Ryu Jee-Youl: A broadband Low Noise Amplifier with built-in linearizer in 0.13-mu m CMOS process. Microelectronics Journal, Vol. 46, no. 8, 2015, pp. 698 – 705. DOI 10.1016/j.mejo.2015.05.006

  49. Biroth M., Achenbach P., Downie E., Thomas A.: A low-noise and fast pre-amplifier and readout system for SiPMs. Nuclear Instruments & Methods in Physics Research: Section A - Accelerators Spectrometers Detectors & Associated Equipment, Vol. 787, 2015, pp. 185 – 188. DOI 10.1016/j.nima.2014.11.097

  50. Akita Ippei, Ishida Makoto: A current noise reduction technique in chopper instrumentation amplifier for high-impedance sensors. IEICE Electronics Express, Vol. 12, no. 11, 2015, Article # 20150374. DOI 10.1587/elex.12.20150374

  51. Zhao Xiaorong, Fan Honghui, Ye Feiyue, et al.: Design of a Two Stage Low Noise System in the Frequency Band 1.8-2.2GHz for Wireless System. Int. J. of Future Generation Communication and Networking, Vol. 8, no. 3, 2015, pp. 111 – 122. DOI 10.14257/ijfgcn.2015.8.3.11

  52. Belostotski L., Veidt B., Warnick K.F., Madanayake A.: Low-Noise Amplifier Design Considerations For Use in Antenna Arrays. IEEE Trans on Antennas & Propagation, Vol. 63, no. 6, 2015, pp. 2508 – 2520. DOI 10.1109/TAP.2015.2419668

  53. Parvizi M., Allidina K., El-Gamal M.N.: A Sub-mW, Ultra-Low-Voltage, Wideband Low-Noise Amplifier Design Technique. IEEE Trans on VLSI, Vol. 23, no. 6, 2015, pp. 1111 – 1122. DOI 10.1109/TVLSI.2014.2334642

  54. Drung D., Krause C.: Excess Current Noise in Amplifiers With Switched Input. IEEE Trans on Instr. & Meas., Vol. 64, no. 6, 2015, pp. 1455 – 1459. DOI 10.1109/TIM.2015.2398958

  55. Huang Dong, Qian Weiqiang, Khan Mehdi, Diao Shengxi, Lin Fujiang: 0.2-4.35 GHz highly linear CMOS balun-LNA with substrate noise optimization. Analog Integrated Circuits & Signal Processing, Vol. 83, no. 3, 2015, pp. 285 – 293. DOI 10.1007/s10470-015-0533-z

  56. Akbari M., Hashemipour O.: Design and analysis of folded cascode OTAs using Gm/Id methodology based on flicker noise reduction. Analog Integrated Circuits & Signal Processing, Vol. 83, no. 3, 2015, pp. 343 – 352. DOI 10.1007/s10470-015-0535-x

  57. Cifuentes A., Marin E.: Implementation of a field programmable gate array-based lock-in amplifier. Measurement, Vol. 69, 2015, pp. 31 – 41. DOI 10.1016/j.measurement.2015.02.037

  58. Trantanella C.J., Blount P.: Low Noise GaN Amplifiers with Inherent Overdrive Protection. Microwave J., Vol. 58, no. 5, 2015, pp. 78 – +.

  59. Nejdel A., Sjoland H., Tormanen M.: A Noise-Cancelling Receiver Front-End With Frequency Selective Input Matching. IEEE Journal of SSC, Vol. 50, no. 5, 2015, pp. 1137 – 1147. DOI 10.1109/JSSC.2015.2415471

  60. Hedayati H., Lau Wing-Fat Andy, Kim Namsoo, Aparin V., Entesari K.: A 1.8 dB NF Blocker-Filtering Noise-Canceling Wideband Receiver With Shared TIA in 40 nm CMOS. IEEE Journal of SSC, Vol. 50, no. 5, 2015, pp. 1148 – 1164. DOI 10.1109/JSSC.2015.2403324

  61. Liu Hang, Zhu Xi, Boon Chirn Chye, Yi Xiang, Kong Lingshan: A 71 dB 150 mu W Variable-Gain Amplifier in 0.18 mu m CMOS Technology. IEEE Microwave & Wireless Comp. Lett., Vol. 25, no. 5, 2015, pp. 334 – 336. DOI 10.1109/LMWC.2015.2410133

  62. Torres Costa A.L., Klimach H., Bampi S.: High linearity 24 dB gain wideband inductorless balun low-noise amplifier for IEEE 802.22 band. Analog Integrated Circuits & Signal Processing, Vol. 83, no. 2, 2015, pp. 187 – 194. DOI 10.1007/s10470-015-0531-1

  63. Reyaz S.B., Malmqvist R., Gustafsson A., Kaynak M.: SiGe BiCMOS high-gain and wideband differential intermediate frequency amplifier for W-band passive imaging single-chip receivers. IET Microwaves Antennas & Propagation, Vol. 9, no. 6, 2015, pp. 569 – 575. DOI 10.1049/iet-map.2014.0511

  64. Wu Jing, Jiang ZhengDong, Yi Kai, et al.: A Q-band CMOS LNA exploiting transformer feedback and noise-cancelling. Science China-Information Sciences, Vol. 58, no. 4, 2015, Article # 042404. DOI 10.1007/s11432-014-5249-7

  65. Elkholy A., Anand T., Choi Woo-Seok, et al.: A 3.7 mW Low-Noise Wide-Bandwidth 4.5 GHz Digital Fractional-N PLL Using Time Amplifier-Based TDC. IEEE Journal of SSC, Vol. 50, no. 4, SI, 2015, pp. 867 – 881. DOI 10.1109/JSSC.2014.2385753

  66. Umeki T., Kazama Takushi, Tadanaga Osamu, Enbutsu Koji, Asobe Masaki, Miyamoto Yutaka, Takenouchi Hirokazu: PDM Signal Amplification Using PPLN-Based Polarization-Independent Phase-Sensitive Amplifier. Journal of Lightwave Technology, Vol. 33, no. 7, 2015, pp. 1326 – 1332. DOI 10.1109/JLT.2014.2385867

  67. Crupi G., Caddemi A., Raffo A., et al.: GaN HEMT Noise Modeling Based on 50-W Noise Factor. Microwave & Optical Techn. Lett., Vol. 57, no. 4, 2015, pp. 937 – 942. DOI 10.1002/mop.28983

  68. Zhou Haijun, Wang Wenzhe, Chen Chaoyong, Zheng Yaohui: A Low-Noise, Large-Dynamic-Range-Enhanced Amplifier Based on JFET Buffering Input and JFET Bootstrap Structure. IEEE Sensors Journal, Vol. 15, no. 4, 2015, pp. 2101 – 2105. DOI 10.1109/JSEN.2014.2371893

  69. Bhattacharya R., Basu A., Koul S.K.: Systematic Determination of Limits on Noise Figure and Distortion in Power Constrained Capacitive Desensitized CMOS LNAs. IETE Journal of Research, Vol. 61, no. 2, 2015, pp. 192 – 198. DOI 10.1080/03772063.2014.999831

  70. Groner Samuel: Reducing Transformerless Microphone Preamplifier Noise at Low Gain Settings. J. of the Audio Engineering Society, Vol. 63, no. 3, 2015, pp. 184 – 190. DOI 10.17743/jaes.2015.0014

  71. Lin Yo-Sheng, Lee Jen-How: A low power and low noise 60-GHz CMOS receiver front-end with high conversion gain and excellent port-to-port isolation. Analog Integrated Circuits & Signal Processing, Vol. 83, no. 2, 2015, pp. 119 – 128. DOI 10.1007/s10470-015-0515-1

  72. Lin Yo-Sheng, Lee Chien-Yo: 9.99 mW 4.8 dB NF 57-81 GHz CMOS Low-Noise Amplifier for 60 GHz WPAN System and 77 GHz Automobile Radar System. Microwave & Optical Techn. Lett., Vol. 57, no. 3, 2015, pp. 594 – 600. DOI 10.1002/mop.28898

  73. Lin Yo-Sheng, Liu Run-Chi: A Low-power, High-Gain, and Low-Noise 5-6 GHz CMOS Low-Noise Amplifier with Excellent Reverse Isolation for IEEE 802.11 n/ac WLAN Applications. Microwave & Optical Techn. Lett., Vol. 57, no. 2, 2015, pp. 296 – 304. DOI 10.1002/mop.28834

  74. Murthy B.T. Venkatesh, Rao I. Srinivasa: Design of Narrow Band UHF Low Noise Amplifier for Wind Profilers. Microwave & Optical Techn. Lett., Vol. 57, no. 3, 2015, pp. 600 – 603. DOI 10.1002/mop.28909

  75. Donida A., Cellier R., Nagari A., Malcovati P., Baschirotto A.: A 40-nm CMOS, 1.1-V, 101-dB Dynamic-Range, 1.7-mW Continuous-Time Sigma Delta ADC for a Digital Closed-Loop Class-D Amplifier. IEEE Trans on CAS I : Regular Papers, Vol. 62, no. 3, 2015, pp. 645 – 653. DOI 10.1109/TCSI.2014.2373971

  76. Hu Zhengfei, Zhang Li, Huang Mindi: A 2.9 mm2 Highly Integrated Low Noise GPS Receiver in 0.18-mu m CMOS Technology. J. of Circuits, Systems & Computers, Vol. 24, no. 3, 2015, Article # 1550036. DOI 10.1142/S021812661550036X

  77. Shymanska Alla: Effect of high-efficiency emitter on noise characteristics of electron amplifiers. J. of Computational Electronics, Vol. 14, no. 1, SI, 2015, pp. 341-351. DOI 10.1007/s10825-015-0661-9

  78. Homayoun A., Razavi B.: A Low-Power CMOS Receiver for 5 GHz WLAN. IEEE Journal of SSC, Vol. 50, no. 3, 2015, pp. 630 – 643. DOI 10.1109/JSSC.2014.2386900

  79. Drung D., Krause C., Becker U., Scherer H., Ahlers F.J.: Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy. Review of Scientific Instruments, Vol. 86, no. 2, 2015, Article # 024703. DOI 10.1063/1.4907358

  80. Li Fanyang, Jiang Hao: A High-PSRR Low Dropout Regulator for LNB Using the First-Stage Reference-Included Coarse-Filtering Technique. J. of Circuits, Systems & Computers, Vol. 24, no. 2, SI, 2015, Article # 1550022. DOI 10.1142/S021812661550022X

  81. Xu Jianfei, Yan Na, Zeng Xiaoyang, Gao Jianjun, Yang Chen: A 3.4 dB NF K-band LNA with a Tapped Capacitor Matching Network in 65 nm CMOS Technology. Int. J. of RF and Microwave Computer-Aided Engineering, Vol. 25, no. 2, 2015, pp. 146 – 153. DOI 10.1002/mmce.20843

  82. Nikandish G., Medi A.: Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers. IEEE Trans on MTT, Vol. 63, no. 2, Part 1, 2015, pp. 441-448. DOI 10.1109/TMTT.2014.2383400

  83. Hoe David H.K., Jin Xiaoyu: The Design of Low Noise Amplifiers in Deep Submicron CMOS Processes: A Convex Optimization Approach. VLSI Design, 2015, Article # UNSP 312639. DOI 10.1155/2015/312639

  84. Beshr Arwa Hassan: Study of ASE noise power, noise figure and quantum conversion efficiency for wide-band EDFA. Optik, Vol. 126, no. 23, 2015, pp. 3492 – 3495. DOI 10.1016/j.ijleo.2015.08.225

  85. Crotti M., Rech I., Acconcia G., Gulinatti A., Ghioni M.: A 2-GHz Bandwidth, Integrated Transimpedance Amplifier for Single-Photon Timing Applications. IEEE Trans on VLSI, Vol. 23, no. 12, 2015, pp. 2819 – 2828. DOI 10.1109/TVLSI.2014.2382551

  86. Guo Xueshi, Liu Nannan, Li Xiaoying, Ou Z.Y.: Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation. Optics Express, Vol. 23, no. 23, 2015, pp. 29369 – 29383. DOI 10.1364/OE.23.029369

  87. Gershikov A., Eisenstein G., Stubenrauch M., Bimberg D.: Phase sensitive parametric fiber amplifier for the 2 mu m wavelength range. Optics Express, Vol. 23, no. 18, 2015, pp. 23952 – 23959. DOI 10.1364/OE.23.023952

  88. Jian Leong Chia, Rashid Hairul Azhar Abdul, Mokhtar Mohd Ridzuan: Effects of macro-bending on 1500-nm amplified spontaneous emission, gain, and noise figure of erbium-gallium co-doped fiber. Optical Engineering, Vol. 54, no. 12, 2015, Article # 126109. DOI 10.1117/1.OE.54.12.126109

  89. Yang Weili, Cao Tong, Yu Yu, et al.: Theoretical Analysis and Experimental Investigation of Degenerate Phase-Sensitive Amplification in a Semiconductor Optical Amplifier. Journal of Lightwave Technology, Vol. 33, no. 19, 2015, pp. 4001 – 4007. DOI 10.1109/JLT.2015.2461572

  90. El Nayal E.K., Fayed H.A., Abd El-Aziz A., Aly M.H.: Amplification and switching functions of SOA: impact of amplified spontaneous emission noise. Optoelectronics and Advanced Materials - Rapid Communications, Vol. 9, no. 9-10, 2015, pp. 1119 – 1125.

  91. Pakarzadeh H., Zakery A.: Investigation of two-pump fiber optical parametric amplifiers for a broadband and flat gain with a low pump-to-signal noise transfer. Journal of Nonlinear Optical Physics & Materials, Vol. 24, no. 3, 2015, Article # 1550038. DOI 10.1142/S0218863515500381

  92. Talarico C., Agrawal G., Wang-Roveda J., Lashgari H.: Design Optimization of a Transimpedance Amplifier for a Fiber Optic Receiver. Circuits Systems & Signal Processing, Vol. 34, no. 9, 2015, pp. 2785 – 2800. DOI 10.1007/s00034-015-0002-z

  93. Ali M.H., Abdullah F., Jamaludin M.Z., et al.: Effect of Cascading Amplification Stages on the Performance of Serial Hybrid Fiber Amplifier. Fiber and Integrated Optics, Vol. 34, no. 3, 2015, pp. 157 – 170. DOI 10.1080/01468030.2015.1061621

  94. Chang M.P., Lee Chia-Lo, Wu Ben, Prucnal P.R.: Adaptive Optical Self-Interference Cancellation Using a Semiconductor Optical Amplifier. IEEE Photonics Technology Lett., Vol. 27, no. 9, 2015, pp. 1018 – 1021. DOI 10.1109/LPT.2015.2405498

  95. Dweiri Y.M., Eggers T., McCallum G., Durand D.M.: Ultra-low noise miniaturized neural amplifier with hardware averaging. Journal of Neural Engineering, Vol. 12, no. 4, 2015, Article # 046024. DOI 10.1088/1741-2560/12/4/046024

  96. Felinskyi G., Dyriv M.: Noise Suppression Phenomenon in Fiber Raman Amplifier. Measurement Science Review, Vol. 15, no. 3, 2015, pp. 107 – 110. DOI 10.1515/msr-2015-0016

  97. Choudhury Pallab K.: Improved noise tolerance and spectral efficiency in RSOA based WDM-PON by using Miller signal. Optical and Quantum Electronics, Vol. 47, no. 3, 2015, pp. 595 – 602. DOI 10.1007/s11082-014-9935-x

  98. Wunram M., Storz P., Brida D., Leitenstorfer A.: Ultrastable fiber amplifier delivering 145-fs pulses with 6-mu J energy at 10-MHz repetition rate. Optics Lett., Vol. 40, no. 5, 2015, pp. 823 – 826. DOI 10.1364/OL.40.000823

  99. Baghban H, Alimohammadi F: Noise Suppression in Quantum-Dot Semiconductor Optical Amplifiers: A Bit Rate-SNR Analysis. IEEE Trans on ED, Vol. 62, no. 3, 2015, pp. 909 – 913. DOI 10.1109/TED.2015.2395960

  100. Jain S., Thipparapu N.K., Barua P., Sahu Jayanta Kumar: Cladding-Pumped Er/Yb-Doped Multi-Element Fiber Amplifier for Wideband Applications. IEEE Photonics Technology Lett., Vol. 27, no. 4, 2015, pp. 356 – 358. DOI 10.1109/LPT.2014.2374234

  101. Fang Yami, Jing Jietai: Quantum squeezing and entanglement from a two-mode phase-sensitive amplifier via four-wave mixing in rubidium vapor. New Journal of Physics, Vol. 17, 2015, Article # 023027. DOI 10.1088/1367-2630/17/2/023027

  102. Chen Mingchen, Shirakawa Akira, Olausson C.B., Alkeskjold T.T.: 87 W, narrow-linewidth, linearly-polarized 1178 nm photonic bandgap fiber amplifier. Optics Express, Vol. 23, no. 3, 2015, pp. 3134 – 3141. DOI 10.1364/OE.23.003134

  103. Higuchi Kazuki, Takeuchi Nobuhito, Yamada Minoru: Peculiar Characteristics of Amplification and Noise for Intensity Modulated Light in Semiconductor Optical Amplifier. IEICE Trans on Electronics, Vol. E97C, no. 11, 2014, pp. 1093 – 1103. DOI 10.1587/transele.E97.C.1093

  104. Mahrof D.H., Klumperink E.A.M., Ru Z., Oude Alink M., Nauta B.: Cancelation of OpAmp virtual ground imperfections by a negative conductance applied to improve RF receiver linearity. IEEE J. Solid-State Circuits, Vol. 49, no. 5, 2014, pp. 1112 – 1124. DOI 10.1109/JSSC.2013.2294637

  105. Lockerbie N.A., Tokmakov K.V.: A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in advanced Laser Interferometer Gravitational wave Observatory suspensions. Review of Scientific Instruments, Vol. 85, no. 11, 2014, Article # 114705. DOI 10.1063/1.4900955

  106. Gawande R., Bradley R., Langston G.: Low noise, 0.4-3 GHz cryogenic receiver for radio astronomy. Review of Scientific Instruments, Vol. 85, no. 10, 2014, Article # 104710. DOI 10.1063/1.4900446

  107. Cochems P., Kirk A., Zimmermann S.: In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers. Review of Scientific Instruments, Vol. 85, no. 12, 2014, Article # 124703. DOI 10.1063/1.4902854

  108. Zhou Liang, Zhang Shuo, Yin Wen-Yan, Mao Jun-Fa: Immunity Analysis and Experimental Investigation of a Low-Noise Amplifier Using a Transient Voltage Suppressor Diode Under Direct Current Injection of HPM Pulses. IEEE Trans on EMC, Vol. 56, no. 6, 2014, pp. 1715 – 1718. DOI 10.1109/TEMC.2014.2332182

  109. Song Ickhyun, Jung Seungwoo, Lourenco N.E., et al.: Design of Radiation-Hardened RF Low-Noise Amplifiers Using Inverse-Mode SiGe HBTs. IEEE Trans on Nuclear Science, Vol. 61, no. 6, Part 1, 2014, pp. 3218 – 3225. DOI 10.1109/TNS.2014.2363631

  110. Bastos I., Oliveira L.B., Goes J., Silva M.: A low power balun LNA with active loads for gain and noise figure optimization. Analog Integrated Circuits & Signal Processing, Vol. 81, no. 3, SI, 2014, pp. 693 – 702. DOI 10.1007/s10470-014-0426-6

  111. Nouri M., Karimi G.: A Novel 2.5-3.1 GHz Wide-Band Low-Noise Amplifier in 0.18 CMOS. Wireless Personal Communications, Vol. 79, no. 3, 2014, pp. 1993 – 2003. DOI 10.1007/s11277-014-1969-7

  112. Hsu Meng-Ting, Lin Yu-Hsien, Jing-Cheng Yang: Low power high gain CMOS LNA based on inverter cell and self-body bias for UWB receivers. Microelectronics Journal, Vol. 45, no. 11, 2014, pp. 1463 – 1469. DOI 10.1016/j.mejo.2014.05.010

  113. Grossman E.N., Leong Kevin, Mei Xiaobing, Deal W.: Low-Frequency Noise and Passive Imaging With 670 GHz HEMT Low-Noise Amplifiers. IEEE Trans on Terahertz Science and Technology, Vol. 4, no. 6, 2014, pp. 749 – 752. DOI 10.1109/TTHZ.2014.2352035

  114. Li Xiaolong, Tian Yubo, Xie Zhibin, et al.: Noise current feedforward for noise cancellation in the wideband transformer shunt feedback low noise amplifier. J. of Communications Technology and Electronics, Vol. 59, no. 11, 2014, pp. 1298 – 1302. DOI 10.1134/S1064226914110254

  115. Klumperink E.A.M., Nauta B.: Software Defined Radio Receivers Exploiting Noise Cancelling: A Tutorial Review. IEEE Communications Magazine, Vol. 52, no. 10, 2014, pp. 111 – 117. DOI 10.1109/MCOM.2014.6917411

  116. Maram R., Van Howe J., Li Ming, et al.: Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect. Nature Communications, Vol. 5, 2014, Article # 5163. DOI 10.1038/ncomms6163

  117. Angelone M., Cardarelli R., Paolozzi L., Pillon M.: Development of a low-noise amplifier for neutron detection in harsh environment. European Physical Journal Plus, Vol. 129, no. 10, 2014, Article # 205. DOI 10.1140/epjp/i2014-14205-1

  118. Cen Mingcan, Song Shuxiang: A High Gain, Low-Power Low-Noise Amplifier for Ultra-Wideband Wireless Systems. Circuits Systems & Signal Processing, Vol. 33, no. 10, 2014, pp. 3251 – 3262. DOI 10.1007/s00034-014-9801-x

  119. Dai Ruofan, Zheng Yunlong, Zhu Hongwei, et al.: A High Gain and High Linearity Current-Reused CMOS LNA Using Modified Derivative Superposition Technique with Bulk-Bias Control. Microwave & Optical Techn. Lett., Vol. 56, no. 10, 2014, pp. 2444 – 2446. DOI 10.1002/mop.28608

  120. Hu Boyu, Yu Xiao Peng, Lim Wei Meng, et al.: Analysis and Design of Ultra-Wideband Low-Noise Amplifier With Input/Output Bandwidth Optimization and Single-Ended/Differential-Input Reconfigurability. IEEE Trans on Industrial Electronics, Vol. 61, no. 10, 2014, pp. 5672 – 5680. DOI 10.1109/TIE.2013.2297434

  121. Tzu-Yun Wang, Min-Rui Lai, Twigg C.M., Sheng-Yu Peng: A Fully Reconfigurable Low-Noise Biopotential Sensing Amplifier With 1.96 Noise Efficiency Factor. IEEE Trans. on Biomedical Circuits and Systems, Vol. 8, no. 3, 2014, pp. 411 – 422. DOI 10.1109/TBCAS.2013.2278659

  122. Duarte M.J., Cabral P.M., Pedro J.C.: Switching Noise Improvement of a Limit-Cycle Amplifier Using a Negative Hysteresis Relay. IEEE Trans on Power Electronics, Vol. 29, no. 6, 2014, pp. 3223 – 3231. DOI 10.1109/TPEL.2013.2272763

  123. Karasz Z., Fiath R., Foldesy P., Rodriguez Vazquez A.: Tunable Low Noise Amplifier Implementation With Low Distortion Pseudo-Resistance for in Vivo Brain Activity Measurement. IEEE Sensors Journal, Vol. 14, no. 5, 2014, pp. 1357 – 1363. DOI 10.1109/JSEN.2013.2294971

  124. Xicheng Jiang, Jungwoo Song, Cheung D., Minsheng Wang, Arunachalam S.K.: Integrated Class-D Audio Amplifier With 95% Efficiency and 105 dB SNR. IEEE Journal of SSC, Vol. 49, no. 11, 2014, pp. 2387 – 2396. DOI 10.1109/JSSC.2014.2335713

  125. Kapusta R., Haiyang Zhu, Lyden C.: Sampling Circuits That Break the kT/C Thermal Noise Limit. IEEE Journal of SSC, Vol. 49, no. 8, 2014, pp. 1694 – 1701. DOI 10.1109/JSSC.2014.2320465

  126. Jingjing Yu, Amer A., Sanchez-Sinencio E.: Electromagnetic Interference Resisting Operational Amplifier. IEEE Trans on CAS I : Regular Papers, Vol. 61, no. 7, 2014, pp. 1917 – 1927. DOI 10.1109/TCSI.2014.2298277

  127. Colli-Menchi A.I., Torres J., Sanchez-Sinencio E.: A Feed-Forward Power-Supply Noise Cancellation Technique for Single-Ended Class-D Audio Amplifiers. IEEE Journal of SSC, Vol. 49, no. 3, 2014, pp. 718 – 728. DOI 10.1109/JSSC.2014.2298456

  128. Yu-Hsun Chien, Kuan-Lin Fu, Shen-Iuan Liu: A 3–25 Gb/s Four-Channel Receiver With Noise-Canceling TIA and Power-Scalable LA. IEEE Trans on CAS II : Express Briefs, Vol. 61, no. 11, 2014, pp. 845 – 849. DOI 10.1109/TCSII.2014.2350372

  129. Ou J., Ferreira P.M.: A gm/ID-Based Noise Optimization for CMOS Folded-Cascode Operational Amplifier. IEEE Trans on CAS II : Express Briefs, Vol. 61, no. 10, 2014, pp. 783 – 787. DOI 10.1109/TCSII.2014.2345297

  130. Blaaberg Soren, Mork Jesper: Noise Spectrum of a Semiconductor Optical Amplifier Excited by a Modulated Signal. IEEE Journal of Quantum Electronics, Vol. 50, no. 4, 2014, pp. 243 – 254. DOI 10.1109/JQE.2014.2306653

  131. Ivanov E.N., Parker S.R., Bara-Maillet R., Tobar M.E.: Noise Properties of Cryogenic Microwave Amplifiers and Relevance to Oscillator Frequency Stabilization. IEEE Trans on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 61, no. 4, 2014, pp. 575 – 581. DOI 10.1109/TUFFC.2014.2946

  132. Gunes Filiz, Demirel Salih, Mahouti Peyman: Design of a Front-End Amplifier for the Maximum Power Delivery and Required Noise by HBMO with Support Vector Microstrip Model. RadioEngineering, Vol. 23, no. 1, 2014, Special no. SI, Part 1, pp. 134 – 143.

  133. Korolev A.M., Shulga V.M., Tarapov S.I.: Extra-low power consumption amplifier based on HEMT in unsaturated mode for use at subkelvin ambient temperatures. Cryogenics, Vol. 60, 2014, pp. 76 – 79. DOI 10.1016/j.cryogenics.2014.01.012

  134. Borgarino M., Beneventi G.B., Doga V., Pavan P.: On the limitations of transimpedance amplifiers as tools for low-frequency noise characterization. Microelectronics J., Vol. 45, no. 2, 2014, pp. 152 – 158. DOI 10.1016/j.mejo.2013.12.007

  135. Serrano-Finetti E., Pallas-Areny R.: Noise Reduction in AC-Coupled Amplifiers. IEEE Trans on Instr. & Meas., Vol. 63, no. 7, 2014, pp. 1834 – 1841. DOI 10.1109/TIM.2014.2299525

  136. Rashtian Hooman, Mirabbasi Shahriar: Design and Layout Techniques for a mm-Wave Body-Biased Variable-Gain Amplifier. Int. J. of RF and Microwave Computer-Aided Engineering, Vol. 24, no. 4, 2014, pp. 470 – 477. DOI 10.1002/mmce.20788

  137. Lamb James W.: Evaluation of biasing and protection circuitry components for cryogenic MMIC low-noise amplifiers. Cryogenics, Vol. 61, 2014, pp. 43 – 54. DOI 10.1016/j.cryogenics.2014.02.005

  138. Derafshi Zahra H., Frounchi J.: Low-noise low-power front-end logarithmic amplifier for neural recording system. Int. J. of Circuit Theory and Applications, Vol. 42, no. 5, 2014, pp. 437 – 451. DOI 10.1002/cta.1861

  139. Marazzi L., Boletti A., Parolari P., Gatto A., Brenot R., Martinelli M.: Relative intensity noise suppression in reflective SOAs. Optics Communications, Vol. 318, 2014, pp. 186 – 188. DOI 10.1016/j.optcom.2013.12.057

  140. Ng K.A., Yong Ping Xu: A Compact, Low Input Capacitance Neural Recording Amplifier. IEEE Trans. on Biomedical Circuits and Systems, Vol. 7, no. 5, 2013, pp. 610 – 620. DOI 10.1109/TBCAS.2013.2280066

  141. D.M.P. Smith, B.E.M. Woestenburg: Technique for reduction of noise resistance in a balanced low-noise amplifier for beam-steering applications. Int. Journal of Microwave and Wireless Technologies, Vol. 5, no. 5, 2013, pp 561 – 565. DOI http://dx.doi.org/10.1017/S1759078713000676

  142. Bierwirth M.: Using Single Transients on the Performance Analysis of Electrochemical Noise Amplifiers. Materials & Corrosion - Werkstoffe & Korrosion, Vol. 64, no. 8, 2013, pp. 664 – 670. DOI 10.1002/maco.201206735

  143. Seth S., Murmann B.: Settling Time and Noise Optimization of a Three-Stage Operational Transconductance Amplifier. IEEE Trans on CAS I: Regular Papers, Vol. 60, no. 5, 2013, pp 1168 – 1174. DOI 10.1109/TCSI.2013.2244325

  144. Ragab K., Kozak M., Nan Sun: Thermal Noise Analysis of a Programmable-Gain Switched-Capacitor Amplifier With Input Offset Cancellation. IEEE Trans on CAS II: Express Briefs, Vol. 60, no. 3, 2013, pp 147 – 151. DOI 10.1109/TCSII.2013.2240831

  145. Georgescu B., Salmeh R., Fattouche M., Ghannouchi F.: Two-Tone Phase Delay Control of Center Frequency and Bandwidth in Low-Noise-Amplifier RF Front Ends. IEEE Trans on CAS II: Express Briefs, Vol. 60, no. 4, 2013, pp 192 – 196. DOI 10.1109/TCSII.2013.2251948

  146. Jiang X., Song J., Wang M., Chen J., Arunachalam S.K.: Integrated Pop-Click Noise Suppression, EMI Reduction, and Short-Circuit Detection for Class-D Audio Amplifiers. IEEE Journal of SSC, Vol. 48, no. 4, 2013, pp 1099 – 1108. DOI 10.1109/JSSC.2013.2238999

  147. Jiawei Xu, Qinwen Fan, Huijsing, J.H., Van Hoof, C., Yazicioglu, R.F., Makinwa, K.A.A.: Measurement and Analysis of Current Noise in Chopper Amplifiers. IEEE Journal of SSC, Vol. 48, no. 7, 2013, pp 1575 – 1584. DOI 10.1109/JSSC.2013.2253217

  148. Demirel S., Gunes F.: Performance characterisation of a microwave transistor for the maximum output power and the required noise. IET Circuits, Devices & Systems, Vol. 7, no. 1, 2013, pp 9 – 20 DOI 10.1049/iet-cds.2012.0119

  149. Richelli A.: EMI susceptibility of DTMOS opamps. Electronics Lett., Vol. 49, no. 2, 2013, pp 98 – 99. DOI 10.1049/el.2012.3941

  150. Rhouni A., Sou G., Leroy P., Coillot C.: Very Low 1/f Noise and Radiation-Hardened CMOS Preamplifier for High-Sensitivity Search Coil Magnetometers. IEEE Sensors Journal, Vol. 13, no.1, 2013, pp.159 – 166. DOI 10.1109/JSEN.2012.2211347

  151. Pakarzadeh H., Zakery A.: Modelling of noise suppression in gain-saturated fiber optical parametric amplifiers. Optics Communications, Vol. 309, 2013, pp. 30 – 36. DOI 10.1016/j.optcom.2013.06.038

  152. Arakawa Tomonori, Nishihara Yoshitaka, Maeda Masahiro, Norimoto Shota, Kobayashi Kensuke: Cryogenic amplifier for shot noise measurement at 20 mK. Applied Physics Letters, Vol. 103, no. 17, 2013, Article # 172104. DOI http://dx.doi.org/10.1063/1.4826681

  153. Kong Jia, Hudelist F., Ou Z. Y., Zhang Weiping: Cancellation of Internal Quantum Noise of an Amplifier by Quantum Correlation. Physical Review Lett., Vol. 111, no. 3, 2013, Article # 033608. DOI 10.1103/PhysRevLett.111.033608

  154. Carney K., Lennox R., Maldonado-Basilio R., Philippe S., Surre F., Bradley L., Landais P.: Method to improve the noise figure and saturation power in multi-contact semiconductor optical amplifiers: simulation and experiment. Optics Express, Vol. 21, no. 6, 2013, pp. 7180 – 7195. DOI 10.1364/OE.21.007180

  155. Schleeh J., Wadefalk N., Nilsson Per-Ake, Starski J. P., Grahn J.: Cryogenic Broadband Ultra-Low-Noise MMIC LNAs for Radio Astronomy Applications. IEEE Trans on MTT, Vol. 61, no. 2, 2013, pp. 871 – 877. DOI 10.1109/TMTT.2012.2235856

  156. Thei F., Rossi M., Bennati M., Crescentini M., Berti C., Tartagni M.: A Low Noise Ion Channel Amplifier in a USB Pen Drive. Biophysical Journal, Vol. 104, no. 2, Supplement: 1, 2013, pp. 519A – 519A.

  157. Green J.E., David J.P.R., Tozer R.C.: A Transimpedance Amplifier for Excess Noise Measurements of High Junction Capacitance Avalanche Photodiodes. Measurement Science & Technology, Vol. 23, no. 12, 2012, Article # 125901. DOI 10.1088/0957-0233/23/12/125901

  158. J. Schleeh, G. Alestig, J. Halonen, A. Malmros, B. Nilsson, P.A. Nilsson, J. Starski, N. Wadefalk, H. Zirath, J. Grahn: Ultralow-Power Cryogenic InP HEMT with Minimum Noise Temperature of 1 K at 6 GHz. IEEE ED Lett., Vol. 33, no. 5, 2012, pp. 664 – 666. DOI 10.1109/LED.2012.2187422

  159. Nakamura T., Kurihara Y., Watanabe K., Terada M.: Design of a Preamplifier for Capacitive Sensors With Wide Low-Frequency Range and Low Drift Noise. IEEE Sensors Journal, Vol. 12, no. 2, 2012, pp. 378 – 383. DOI 10.1109/JSEN.2011.2161282

  160. Levinzon F.A.: Ultra-Low-Noise Seismic Piezoelectric Accelerometer With Integral FET Amplifier. IEEE Sensors Journal, Vol. 12, no. 6, 2012, pp. 2262 – 2268. DOI 10.1109/JSEN.2012.2186564

  161. Kooi J.W., Chamberlin R.A., Monje R., Force B., Miller D., Phillips T.G.: Balanced Receiver Technology Development for the Caltech Submillimeter Observatory. IEEE Trans on Terahertz Science and Technology, Vol. 2, no. 1, 2012, pp. 71 – 82. DOI 10.1109/TTHZ.2011.2177726

  162. Zhao Y., Ojefors E., Aufinger K., Meister T. F., Pfeiffer U. R.: A 160-GHz Subharmonic Transmitter and Receiver Chipset in an SiGe HBT Technology. IEEE Trans on MTT, Vol. 60, no. 10, 2012, pp. 3286 – 3299. DOI 10.1109/TMTT.2012.2209450

  163. Aja B., Seelmann-Eggebert M., Leuther A., Massler H., Schlechtweg M., Gallego J. D., Lopez-Fernandez I., Diez C., Malo I., Villa E., Artal E.: 4–12 GHz and 25–34 GHz cryogenic MHEMT MMIC Low Noise Amplifiers for radio astronomy. IEEE MTT-S Int. Microwave Symp. Digest (MTT), 2012, pp. 1 – 3. DOI 10.1109/MWSYM.2012.6259592

  164. Oupeng Li, Yuehang Xu, Yunchuan Guo, Lei Wang, Ruimin Xu, Bo Yan: 60 GHz GaAs MMIC low noise amplifier. Int. Conf on Microwave and Millimeter Wave Technology (ICMMT), Vol. 1, 2012, pp. 1 – 3. DOI 10.1109/ICMMT.2012.6229981

  165. Jeng-Han Tsai, Ji-Yang Lin, Kun-Yao Ding: Design of a 9–25 GHz broadband low noise amplifier using 0.15-μm GaAs HEMT process. Int. Conf on Microwave and Millimeter Wave Technology (ICMMT), Vol. 5, 2012, pp. 1 – 4. DOI 10.1109/ICMMT.2012.6230368

  166. Pospieszalski M.W.: Cryogenic amplifiers for Jansky Very Large Array receivers. Int. Conf on Microwave Radar and Wireless Communications (MIKON), Vol. 2, 2012, pp. 748 – 751. DOI 10.1109/MIKON.2012.6233589

  167. Eskanadri S., Hamedani F.T.: Design and progress of a wideband 120–210 GHz low noise amplifier. Int. Conf on Microwave Radar and Wireless Communications (MIKON), Vol. 2, 2012, pp. 757 – 760. DOI 10.1109/MIKON.2012.6233630

  168. Zech C., Diebold S., Wagner S., Schlechtweg M., Leuther A., Ambacher O., Kallfass I.: An ultra-broadband low-noise traveling-wave amplifier based on 50nm InGaAs mHEMT technology. German Microwave Conference (GeMiC), 2012, pp. 1 – 4. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6185178&isnumber=6185137

  169. Zeimpekis I., Sari I., Kraft M.: Characterization of a Mechanical Motion Amplifier Applied to a MEMS Accelerometer. Journal of Microelectromechanical Systems, Vol. 21, no. 5, 2012, pp. 1032 – 1042. DOI 10.1109/JMEMS.2012.2196491

  170. Bum-Kyum Kim, Donggu Im, Jaeyoung Choi, Kwyro Lee: A 1 GHz 1.3 dB NF +13 dBm output P1dB SOI CMOS low noise amplifier for SAW-less receivers. IEEE Radio Frequency Integrated Circuits Symp. (RFIC) 2012, pp. 9 – 12. DOI 10.1109/RFIC.2012.6242138

  171. Dehrizi H.G., Haddadnia J.: A great Ultra Wideband (3.1–10.6-GHz) LNA in 0.18-μm (CMOS) for UWB pulse-radio systems applications. Int. Multi-Conf on Systems, Signals and Devices (SSD), 2012, pp. 1 – 4. DOI 10.1109/SSD.2012.6198086

  172. Wei Cheng, Annema A.J., Wienk G.J.M., Nauta B.: A wideband IM3 cancellation technique using negative impedance for LNAs with cascode topology. IEEE Radio Frequency Integrated Circuits Symp. (RFIC), 2012, pp. 13 – 16. DOI 10.1109/RFIC.2012.6242221

  173. Pintelon R., Schoukens J.: The best linear approximation of nonlinear systems operating in feedback. IEEE Int. Instrumentation & Measurement Technology Conf (I2MTC), 2012, pp. 2092 – 2097. DOI 10.1109/I2MTC.2012.6229142

  174. Yu-na Su, Geng Li: Design of a Low Noise Amplifier of RF communication receiver for mine. IEEE Symp. on Electrical & Electronics Eng. (EEESYM), 2012, pp. 125 – 127. DOI 10.1109/EEESym.2012.6258604

  175. Pakarzadeh H.: Optimization of Two-Pump Fiber Optical Parametric Amplifiers for Broadband Flat Gain and Low Pump-to-Signal Noise Transfer. Symp. on Photonics and Optoelectronics (SOPO), 2012, pp. 1 – 4. DOI 10.1109/SOPO.2012.6270508

  176. Lee Shuenn-Yuh, Wang Liang-Hung, Chen Tsung-Yen, Yu Chih-Tao: A low-power RF front-end with merged LNA, differential power splitter, and quadrature mixer for IEEE 802.15.4 (ZigBee) applications. IEEE Int. Symp on Circuits and Systems (ISCAS), 2012, pp. 1492 – 1495. DOI 10.1109/ISCAS.2012.6271531

  177. Manikandan P., Areeckal A.S.: A Novel CMOS Low Noise Amplifier for UWB Application. Int. Conf. on Advanced Computing & Communication Technologies (ACCT), 2012, pp. 450 – 453. DOI 10.1109/ACCT.2012.8

  178. Matindoust S., Sadeghy Bajestani G., Akhlaghi I. A., Nabovati H., Vahedian M.: Improvement of ultra-wideband LNA parameters, multi-objective algorithm for flatness over bandwidth less 3dB. Iranian Conf. on Electrical Engineering (ICEE), 2012, pp. 154 – 159. DOI 10.1109/IranianCEE.2012.6292343

  179. Bo-Han Hwang, Yo J.-A., Jiann-Jong Chen, Yuh-Shyan Hwang, Cheng-Chieh Yu: A low-voltage low-noise DC-DC flyback converter with delta-sigma modulation. IEEE Int. Symp on Circuits and Systems (ISCAS), 2012, pp. 2251 – 2254. DOI 10.1109/ISCAS.2012.6271741

  180. G. Moschetti, N. Wadefalk, P.-. Nilsson, M. Abbasi, L. Desplanque, X. Wallart, J. Grahn: Cryogenic InAs/AlSb HEMT Wideband Low-Noise IF Amplifier for Ultra-Low-Power Applications. IEEE Microwave & Wireless Comp. Lett., Vol. 22, no. 3, 2011, pp. 144 – 146. DOI 10.1109/LMWC.2011.2182637

  181. D. Drung, J-H. Storm: Ultralow-noise chopper amplifier with low input charge injection. IEEE Trans on Instr. & Meas., Vol. 60, no. 7, 2011, pp. 2347 – 2352. DOI 10.1109/TIM.2011.2114030

  182. Zhang Heng, Sanchez-Sinencio E.: Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial. IEEE Trans on CAS I: Regular Papers, Vol. 58, no. 1, 2011, pp. 22 – 36. DOI 10.1109/TCSI.2010.2055353

  183. Krüger P.P., Visser B., de Jager O.C.: Theory and Design of Low-Noise Multipath Amplifiers. IEEE Trans on MTT, Vol. 59, no. 2, pp. 414-424, 2011 DOI 10.1109/TMTT.2010.2095878

  184. Garmendia N., Portilla J.: Effect of the Input and Output Impedance on Amplifier Large-Signal Noise Performances. IEEE Trans on MTT, Vol. 59, no. 6, 2011, pp. 1571 – 1578. DOI 10.1109/TMTT.2011.2114673

  185. Galal S., Hui Zheng, Abdelfattah K., Chandrasekhar V., Mehr I., Chen A.J., Platenak J., Matalon N., Brooks T.L.: A 60mW 1.15mA/channel Class-G Stereo Headphone Driver with 111dB DR and 120dB PSRR. IEEE Custom Integrated Circuits Conf (CICC), 2011, pp. 1 – 4. DOI 10.1109/CICC.2011.6055310

  186. Xuezhou Zhu, Zhi Deng, Yulan Li, Yinong Liu, Qian Yue, Jin Li: A cryogenic ultra-low noise CMOS preamplifier for point-contact HPGe detectors. IEEE Nuclear Science Symp. and Medical Imaging Conf (NSS/MIC), 2011, pp. 766 – 769. DOI 10.1109/NSSMIC.2011.6154219

  187. Ferreyro F., Barbieri M., Blandino R., Fossier S., Tualle-Brouri R., Grangier P.: Implementation of a Nondeterministic Optical Noiseless Amplifier. Physical Review Lett., Vol. 104, no. 12, 2010, Article # 123603. DOI 10.1103/PhysRevLett.104.123603

  188. Yang Xuebei, Liu Guanxiong, Balandin A.A., Mohanram Kartik: Triple-Mode Single-Transistor Graphene Amplifier and Its Applications. ACS Nano, Vol. 4, no. 10, 2010, pp. 5532 – 5538. DOI 10.1021/nn1021583

  189. Liero A., Dewitz M., Kuhn S., Chaturvedi N., Jijun Xu, Rudolph M.: On the Recovery Time of Highly Robust Low-Noise Amplifiers. IEEE Trans on MTT, Vol. 58, no. 4, 2010, pp. 781 – 787. DOI 10.1109/TMTT.2010.2041519

  190. Blount P., Trantanell C.J., Coryell L., Lau R.: Low noise, low power dissipation mHEMT-based amplifiers for phased array application. IEEE Int. Symp on Phased Array Systems and Technology (ARRAY), 2010, pp. 233 – 237. DOI 10.1109/ARRAY.2010.5613366

  191. Andrei C., Liero A., Lossy R., Heinrich W., Rudolph M.: Highly linear broadband GaN-based low-noise amplifier. German Microwave Conference (GeMiC), 2010, pp. 36-38 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5498249&isnumber=5498201

  192. Bogris A., Syvridis D., Efstathiou C.: Noise Properties of Degenerate Dual Pump Phase Sensitive Amplifiers. Journal of Lightwave Technology, Vol. 28, no. 8, 2010, pp. 1209 – 1217. DOI 10.1109/JLT.2010.2044016

  193. Richelli A.: CMOS OpAmp Resisting to Large Electromagnetic Interferences. IEEE Trans on EMC, Vol. 52, no 4, 2010, pp 1062 – 1065. DOI 10.1109/TEMC.2010.2055872

  194. Costa G., Giménez N, Arnaud A, Miguez M: SCTF loop for noise reduction in Autozero amplifiers. Electronics Lett., Vol. 46, no 18, 2010, pp 1256 – 1257. DOI 10.1049/el.2010.1456

  195. Noulis T., Kaiserlis N., Siskos S., Sarrabayrouse G.: SiGe BiCMOS CSA-shaper radiation detection front end: Noise performance and noise modelling. 15th IEEE Mediterranean Electrotechnical Conf (MELECON 2010), 2010, pp. 896 – 901. DOI 10.1109/MELCON.2010.5475937

  196. Sbaraini S, Richelli A, Kovacs-Vajna, Zs M: EMI susceptibility in bulk-driven Miller opamp. Electronics Lett., Vol. 46, no 16, 2010, pp 1111 – 1113. DOI 10.1049/el.2010.1029

  197. Crovetti P.S.: Operational amplifier immune to EMI with no baseband performance degradation. Electronics Lett., Vol. 46, no 3, 2010, pp 209 – 210. DOI 10.1049/el.2010.2853

  198. Bombelli L., Fiorini C., Frizzi T., Nava R., Greppi A., Longoni A.: Low-noise CMOS charge preamplifier for X-ray spectroscopy detectors. IEEE Nuclear Science Symp. Conf. Record (NSS), 2010, pp. 135 – 138. DOI 10.1109/NSSMIC.2010.5873732

  199. Giusi G., Crupi F., Pace C., Magnone P.: Full Model and Characterization of Noise in Operational Amplifier. IEEE Trans on CAS I: Regular Papers, vol. 56, no. 1, 2009, pp. 97 – 102. DOI 10.1109/TCSI.2008.927011

  200. Giusi G., Crupi F., Pace C.: Ultrasensitive low noise voltage amplifier for spectral analysis. Review of Scientific Instruments, Vol. 79, no. 8, 2009, pp. 084701. DOI 10.1063/1.2967339

  201. Malo-Gomez I., Gallego-Puyol J.D., Diez-Gonzalez C., Lopez-Fernandez I., Briso-Rodriguez C.: Cryogenic Hybrid Coupler for Ultra-Low-Noise Radio Astronomy Balanced Amplifiers. IEEE Trans on MTT, Vol. 57, no. 12, 2009, pp. 3239 – 3245. DOI 10.1109/TMTT.2009.2033874

  202. Rudolph M., Chaturvedi N., Hirche K., Wurfl J., Heinrich W., Trankle G.: Highly Rugged 30 GHz GaN Low-Noise Amplifiers. IEEE Microwave & Wireless Comp. Lett., Vol. 19, no. 4, 2009, pp. 251 – 253. DOI 10.1109/LMWC.2009.2015514

  203. Radic J.B., Djugova A.M., Videnovic-Misic M.S.: Linearity issue in 2.4 GHz 0.35μm BiCMOS low noise amplifier. Int.Conf on Telecom. in Modern Satellite, Cable, and Broadcasting Services (TELSIKS), 2009, pp. 32 – 35. DOI 10.1109/TELSKS.2009.5339498

  204. Hu Zhiyong, Quan Haiyang, Zhang Fuqiang, Wang Peisheng: Ultra-Low Noise Charge Sensitive Amplifier for MEMS Gyroscope. Int. Conf. on MEMS, NANO, and Smart Systems (ICMENS), 2009, pp. 29 – 32. DOI 10.1109/ICMENS.2009.20

  205. Khalil I., Rudolph M., Liero A., Neumann M., Heinrich W.: High Power, High Linearity and Low-Noise Hybrid RF Amplifiers Based on GaN HEMTs. German Microwave Conference (GeMiC), 2009, pp. 1 – 4. DOI 10.1109/GEMIC.2009.4815890

  206. Dimitropoulos D., Solli D.R., Claps R., Boyraz O., Jalali B.: Noise Figure of Silicon Raman Amplifiers. Journal of Lightwave Technology, Vol. 26, no. 7, 2008, pp. 847 – 852. DOI 10.1109/JLT.2007.915211

  207. Levinzon F. A.: Ultra-Low-Noise High-Input Impedance Amplifier for Low-Frequency Measurement Applications. IEEE Trans on CAS I : Regular Papers, Vol. 55, no. 7, 2008, pp. 1815 – 1822. DOI 10.1109/TCSI.2008.918213

  208. Felinskyi G.: Amplified spontaneous emission measurements and noise figure of the distributed fiber Raman amplifiers with terahertz bandwidth. 4th Int.Conf on Advanced Optoelectronics and Lasers (CAOL), 2008, pp. 140 – 142. DOI 10.1109/CAOL.2008.4671879

  209. Kopa A., Apsel A.B.: Distributed Amplifier With Blue Noise Active Termination. IEEE Microwave and Wireless Components Letters, Vol. 18, no 3, 2008, pp 203 – 205. DOI 10.1109/LMWC.2008.916814

  210. Pullia A., Zocca F., Riboldi S., Budjas D., D'Andragora A., Cattadori C.: A cryogenic low-noise JFET-CMOS preamplifier for the HPGe detectors of GERDA. IEEE Nuclear Science Symp. Conf. Record (NSS), 2008, pp. 2056 – 2060. DOI 10.1109/NSSMIC.2008.4774881

  211. Miller D. A., Poocharoen P., Forbes L.: 1/f Noise and RTS (Random Telegraph Signal) Errors in Sense Amplifiers. IEEE Workshop on Microelectronics and Electron Devices (WMED 2007), 2007, pp. 21 – 22. DOI 10.1109/WMED.2007.368839

  212. Walravens C., Van Winckel S., Redoute J.M., Steyaert M.: Efficient reduction of electromagnetic interference effects in operational amplifiers. Electronics Lett., Vol. 43, no 2, 2007, pp 84 – 85. DOI 10.1049/el:20073026

  213. Rudolph M., Behtash R., Doerner R., Hirche K., Wurfl J., Heinrich W., Trankle G.: Analysis of the Survivability of GaN Low-Noise Amplifiers. IEEE Trans on MTT, Vol. 55, no. 1, 2007, pp. 37 – 43. DOI 10.1109/TMTT.2006.886907

  214. Redoute J.-M., Steyaert M.: Measurement of EMI induced input offset voltage of an operational amplifier. Electronics Lett., Vol. 43, no 20, 2007, pp 1088 – 1090. DOI 10.1049/el:20071017

  215. Agnes A., Cabrini A., Maloberti F., Martini G.: Cancellation of Amplifier Offset and 1/f Noise: An Improved Chopper Stabilized Technique. IEEE Trans on CAS II : Express Briefs, Vol. 54, no. 6, 2007, pp. 469 – 473. DOI 10.1109/TCSII.2007.891758

  216. Crupi F., Giusi G., Pace C.: Two-channel amplifier for high-sensitivity voltage noise measurements. IEEE Int. Instrumentation & Measurement Technology Conf (I2MTC), 2007, pp. 1 – 4. DOI 10.1109/IMTC.2007.379126

  217. Garmendia N., Portilla J.: Study of PM Noise and Noise Figure in Low Noise Amplifiers Working under Small and Large Signal Conditions. IEEE MTT-S Int. Microwave Symp Digest (MTT), pp. 2095-2098, 2007 DOI 10.1109/MWSYM.2007.380300

  218. Pullia A., Zocca F., Oberlack U., Olsen C., Shagin P.: A cold low noise preamplifier for use in liquid Xenon. IEEE Nuclear Science Symp. Conf. Record (NSS), Vol. 1, 2007, pp. 424 – 428. DOI 10.1109/NSSMIC.2007.4436362

  219. Gans M.J.: Channel Capacity Between Antenna Arrays— Part I: Sky Noise Dominates. IEEE Trans on Communications, Vol. 54, no. 9, 2006, pp. 1586 – 1592. DOI 10.1109/TCOMM.2006.881238

  220. Gans M.J.: Channel Capacity Between Antenna Arrays— Part II: Amplifier Noise Dominates. IEEE Trans on Communications, Vol. 54, no. 11, 2006, pp. 1983 – 1992. DOI 10.1109/TCOMM.2006.881366

  221. Randa J., Gerecht E., Dazhen Gu, Billinger R.L.: Precision measurement method for cryogenic amplifier noise temperatures below 5 K. IEEE Trans on MTT, Vol. 54, no. 3, 2006, pp. 1180 – 1189. DOI 10.1109/TMTT.2005.864107

  222. Ciofi C., Crupi F., Pace C., Scandurra G.: How to enlarge the bandwidth without increasing the noise in OP-AMP-based transimpedance amplifier. IEEE Trans on Instr. & Meas., Vol. 55, no. 3, 2006, pp. 814 – 819. DOI 10.1109/TIM.2006.873782

  223. Lee H., Mohammadi S.: A 3 GHz subthreshold CMOS low noise amplifier. IEEE Radio Frequency Integrated Circuits Symp. (RFIC), 2006, pp. 4 DOI 10.1109/RFIC.2006.1651199

  224. Rudolph M., Behtash R., Hirche K., Wurfl J., Heinrich W., Trankle G.: A Highly Survivable 3-7 GHz GaN Low-Noise Amplifier. IEEE MTT-S Int. Microwave Symp Digest (MTT), 2006, pp. 1899 – 1902. DOI 10.1109/MWSYM.2006.249786

  225. Tao Yin, Haigang Yang, Quan Yuan, Guoping Cui: Noise Analysis and Simulation of Chopper Amplifier. IEEE Asia Pacific Conf. on Circuits and Systems (APCCAS), pp. 167-170, 2006 DOI 10.1109/APCCAS.2006.342339

  226. Lopez-Fernandez I., Puyol J.D.G., Gonzalez C.D., Cancio A.B.: Development of Cryogenic IF Low-Noise 4-12 GHz Amplifiers for ALMA Radio Astronomy Receivers. IEEE MTT-S Int. Microwave Symp Digest (MTT), 2006, pp. 1907 – 1910. DOI 10.1109/MWSYM.2006.249788

  227. Fiori F.L., Crovetti P.S.: Prediction of high-power EMI effects in CMOS operational amplifiers. IEEE Trans on EMC, Vol. 48, no 1, 2006, pp 153 – 160. DOI 10.1109/TEMC.2006.870690

  228. Zadeh A.R., Nikmehr S.: Noise Considerations in Cascaded Single-Stage Distributed Amplifiers. Int. Conf. on Electrical and Computer Engineering (ICECE '06), 2006, pp. 92 – 95. DOI 10.1109/ICECE.2006.355298

  229. Mozjerin I., Hardy A.A., Ruschin S.: Effect of chip area limitation on gain and noise of erbium-doped waveguide amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, no. 1, 2005, pp. 204 – 210. DOI 10.1109/JSTQE.2004.841695

  230. Aparin V., Larson L.E.: Modified derivative superposition method for linearizing FET low-noise amplifiers. IEEE Trans on MTT, Vol. 53, no. 2, 2005, pp. 571 – 581. DOI 10.1109/TMTT.2004.840635

  231. Mingxu Liu, Craninckx J., Iyer N.M., Kuijk M., Barel A.: A 6.5-kV ESD protected 3-5-GHz ultra-wideband BiCMOS low noise amplifier using interstage gain roll-off compensation. IEEE Int. Conf on Ultra-Wideband (ICU), 2005, pp. 525 – 529. DOI 10.1109/ICU.2005.1570043

  232. Kalantari F., Masoumi N., Saeidi R.: A 5.25-GHz Low Noise Amplifier for WMAN Applications in a 0.18-μm CMOS Technology. Int. Conf on Microelectronics (ICM), 2005, pp. 122 – 127. DOI 10.1109/ICM.2005.1590051

  233. Jeonghoon Lee, Youngsik Kim: CMOS low noise amplifier design techniques using shunt resistive feedback. Proc. Asia-Pacific Microwave Conf. (APMC), Vol. 3, 2005, pp. 4 DOI 10.1109/APMC.2005.1606587

  234. Won Ko, Youngwoo Kwon: Improved noise analysis of distributed preamplifier with cascode FET cells. IEEE Trans on MTT, Vol. 53, no. 1, 2005, pp 361 – 371. DOI 10.1109/TMTT.2004.839937

  235. Richelli A., Colalongo L., Quarantelli M., Kovacs-Vajna Z.M.: Robust design of low EMI susceptibility CMOS OpAmp. IEEE Trans on EMC, Vol. 46, no 2, 2004, pp 291 – 298. DOI 10.1109/TEMC.2004.826874

  236. Vandersmissen R., Schreurs D., Dambrine G., Carchon G., Borghs G.: Noise and large-signal characterization of a thin-film MHEMT feedback amplifier in multilayer MCM-D technology. Proc. of the 2004 Int. Conf. on Compound Semiconductor Manufacturing Technology, GaAs MANTecH 2004, Miami, FL, USA, 2004, 8.14, 4p. http://www.gaasmantech.org/Digests/2004/2004Papers/8.14.pdf

  237. Ismail A., Abidi A.A.: A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network. IEEE Journal of SSC, Vol. 39, no. 12, 2004, pp. 2269 – 2277. DOI 10.1109/JSSC.2004.836344

  238. N. Wadefalk, A. Mellberg, I. Angelov, M.E. Barsky, S. Bui, E. Choumas, R.W. Grundbacher, E.L. Kollberg, R. Lai, N. Rorsman, P. Starski, J. Stenarson, D.C. Streit, H. Zirath: Cryogenic wide-band ultra-low-noise IF amplifiers operating at ultra-low DC power. IEEE Trans on MTT, Vol. 51, no. 6, 2003, pp. 1705 – 1711. DOI 10.1109/TMTT.2003.812570

  239. Howe D.A., Ostrick J.R.: 100-GHz cooled amplifier residual PM and AM noise measurements, noise figure, and jitter calculations. IEEE Trans on MTT, Vol. 51, no. 11, 2003, pp. 2235 – 2242. DOI 10.1109/TMTT.2003.818934

  240. Howe D.A., Ostrick J.R.: Residual PM and AM noise measurements, noise figure and jitter calculations of 100 GHz amplifiers. Proc. of IEEE Int. Frequency Control Symp. and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003, pp. 503 – 515. DOI 10.1109/FREQ.2003.1275143

  241. Abuelma'atti M.T.: Analysis of the effect of radio frequency interference on the DC performance of bipolar operational amplifiers. IEEE Trans on EMC, Vol. 45, no 2, 2003, pp 453 – 458. DOI 10.1109/TEMC.2003.811312

  242. Yamamoto Y., Inoue K.: Noise in amplifiers. Journal of Lightwave Technology, Vol. 21, no. 11, 2003, pp 2895 – 2915. DOI 10.1109/JLT.2003.816887

  243. Fiori F.: A new nonlinear model of EMI-induced distortion phenomena in feedback CMOS operational amplifiers. IEEE Trans on EMC, Vol. 44, no 4, 2002, pp 495 – 502. DOI 10.1109/TEMC.2002.804766

  244. Hashemi H., Hajimiri A.: Concurrent multiband low-noise amplifiers-theory, design, and applications. IEEE Trans on MTT, Vol. 50, no. 1, 2002, pp. 288 – 301. DOI 10.1109/22.981282

  245. Ha S.J., Lee Y.D., Kim Y.H., Choi J.J., Hong U.S.: Dielectric resonator oscillator with balanced low noise amplifier. Electronics Lett., Vol. 38, no. 24, 2002, pp. 1542 – 1544. DOI 10.1049/el:20020993

  246. Meissner M., Rosch M., Korolkova N., Sizmann A., Schmauss B., Leuchs G.: Optimum splitting ratio for amplifier noise reduction by an asymmetric nonlinear optical loop mirror. European Conf on Optical Communication (ECOC), Vol. 3, 2002, pp. 1 – 2. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1601229&isnumber=33653

  247. Fiori F.: Operational amplifier input stage robust to EMI. Electronics Lett., Vol. 37, no 15, 2001, pp 930 – 931. DOI 10.1049/el:20010651

  248. Balamurgan G., Shambhag N.R.: The Twin-Transistor Noise-Tolerant Dynamic Circuit Technique. IEEE JSSC, vol. 36,no. 2, Feb. 2001, pp 273 – 280. DOI 10.1109/4.902768

  249. Pichler B.J., Pimpl W., Buttler W., Kotoulas L., Boning G., Rafecas M., Lorenz E., Ziegler S.I.: Integrated low-noise low-power fast charge-sensitive preamplifier for avalanche photodiodes in JFET-CMOS technology. IEEE Trans on Nuclear Science, Vol. 48, no. 6, 2001, pp. 2370 – 2374. DOI 10.1109/23.983270

  250. Oh E. S., Sharp E. H., Fixsen D. J., Cheng E. S., Inman C. A., Silver C.: A low noise cryogenic preamplifier for the cosmic microwave background radiation anisotropy experiment. Review of Scientific Instruments, Vol. 72, no. 6, 2001, pp. 2735 – 2737. DOI 10.1063/1.1372167

  251. Imajuku W., Takada A., Yamabayashi Y.: Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit. Electronics Lett., Vol. 36, no 1, 6 Jan. 2000, pp 63 – 64. DOI 10.1049/el:20000032

  252. Strutz S.J., Williams K.J.: Low-noise hybrid erbium/Brillouin amplifier. Electronics Lett., Vol. 36, no 16, 3 Aug. 2000, pp 1359 – 1360. DOI 10.1049/el:20001016

  253. Levinzon F. A.: Noise of the JFET amplifier. IEEE Trans on CAS I : Fundamental Theory and Applications, Vol. 47, no. 7, 2000, pp. 981 – 985. DOI 10.1109/81.855453

  254. Jiansheng Xu, Yisong Dai, Abbott D.: A complete operational amplifier noise model: analysis and measurement of correlation coefficient. IEEE Trans on CAS I : Regular Papers, Vol. 47, no. 3, 2000, pp. 420 – 424. DOI 10.1109/81.841928

  255. Kobayashi K.W., Fernandez J.E., Kobayashi J.H., Leung M., Oki A.K., Tran L.T., Lammert M., Block T.R., Streit D.C.: A DC-3 GHz cryogenic AlGaAs/GaAs HBT low noise MMIC amplifier with 0.15 dB noise figure. IEEE Int. Electron Devices Meeting (IEDM), 1999, pp. 775 – 778. DOI 10.1109/IEDM.1999.824265

  256. Abidi A.A., Leete J.C.: De-Embedding the Noise Figure of Differential Amplifiers. IEEE JSSC, vol. 34, no. 6, June 1999, pp 882 – 885. DOI 10.1109/4.766823

  257. Boglione L., Pollard R., Postoyalko V.: Rn Circles for Series-Feedback Amplifiers. IEEE Trans. on MTT, vol. 47, no. 7, July 1999, pp 973 – 978. DOI 10.1109/22.775428

  258. Hakkinen J., Rahkonen T., Kostamovaara J.: An integrated programmable low-noise charge pump. Proc of 6th IEEE Int. Conf on Electronics, Circuits and Systems (ICECS '99), vol. 1, 1999, pp. 185 – 188. DOI 10.1109/ICECS.1999.812254

  259. Xu J., Dai Y., Yaqen Li: The Study of the Relation Between Rn – Gn Noise Model and En – In Noise Model of an Amplifier. IEEE Trans. on CAS I, vol. 45, no. 2, Febr. 1998, pp 154 – 156. DOI 10.1109/81.661680

  260. Kerr A. R.: On the Noise Properties of Balanced Amplifiers. IEEE Microwave and Guided Wave Letters, vol. 4, no. 11, Nov. 1998, pp 390 – 392. DOI 10.1109/75.736255

  261. Blank A., Kastner R., Levanon H.: Exploring new active materials for low-noise room-temperature microwave amplifiers and other devices. IEEE Trans on MTT, vol. 46, no. 12, pp. 2137-2144, Dec 1998 DOI 10.1109/22.739295

  262. Walls F. L., Ferre-Pikal E. S., Jefferts S. R.: Origin of 1/f PM and AM Noise in Bipolar Junction Transistor Amplifiers. IEEE Trans on Ultrasonics, Ferroelectrics and Freq. Control, Vol. 44, no 2, March 1997, pp 326 – 334. DOI 10.1109/58.585117

  263. Shaeffer D. K., Lee T. H.: A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier. IEEE Journal of Solid State Circ., vol. 32, no. 5 May 1997, pp 745 – 759. DOI 10.1109/4.568846

  264. Daw E., Bradley R. F.: Effect of high magnetic fields on the noise temperature of a heterostructure field-effect transistor low-noise amplifier. Journal of Applied Physics, Vol. 82, no. 4, 1997, pp. 1925 – 1929. DOI 10.1063/1.366000

  265. Wait D.F., Randa J.: Amplifier noise measurements at NIST. IEEE Trans on Instr. & Meas., Vol. 46, no. 2, 1997, pp. 482 – 485. DOI 10.1109/19.571891

  266. Donati S., Giuliani G.: Noise in an optical amplifier: formulation of a new semiclassical model. IEEE Journal of Quantum Electronics, Vol. 33, no. 9, 1997, pp. 1481 – 1488. DOI 10.1109/3.622626

  267. Bertuccio G., Fasoli L., Sampietro M.: Design criteria of low-power low-noise charge amplifiers in VLSI bipolar technology. IEEE Trans on Nuclear Science, Vol. 44, no. 5, 1997, pp. 1708 – 1718. DOI 10.1109/23.633423

  268. Novakov E.: Evaluation of the electrode-amplifier noise in high resolution biological signal acquisition. Proc. Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Vol. 4, 1997, pp. 1452 – 1454. DOI 10.1109/IEMBS.1997.756979

  269. I.G. Finvers, J.W. Haslett, F.N. Trofimenkoff: Noise Analysis of a Continuous-Time Auto-Zeroed Operational Amplifier. IEEE Trans. on CAS, Part II, Vol. 43, no. 12, 1996, pp. 791 – 800. DOI 10.1109/82.553395

  270. Shtaif M., Eisenstein G.: Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit. IEEE Journal of Quantum Electronics, Vol. 32, no. 10, 1996, pp. 1801 – 1809. DOI 10.1109/3.538787

  271. Tarasov M., Ivanov Z.: Optimization of input impedance and mechanism of noise suppression in a DC SQUID RF amplifier. IEEE Trans on Applied Superconductivity, Vol. 6, no. 2, 1996, pp. 81 – 86. DOI 10.1109/77.506687

  272. Blake K.: Noise Design of Current-Feedback Op Amp Circuits. Applic. Note OA-12, Rev. B, National Semicond., April 1996.

  273. M. Steffes: Noise Analysis for High Speed Op Amps. Burr-Brown, 1996, AB-103.

  274. Jacobs I.: Dependence of optical amplifier noise figure on relative-intensity-noise. Journal of Lightwave Technology, Vol. 13, no. 7, 1995, pp. 1461 – 1465. DOI 10.1109/50.400712

  275. Kobayashi K.W., Oki A.K.: A DC-10 GHz high gain-low noise GaAs HBT direct-coupled amplifier. IEEE Microwave and Guided Wave Letters, Vol. 5, no. 9, 1995, pp. 308 – 310. DOI 10.1109/75.410407

  276. Jung T.S., Guckel H., Seefeldt J., Ott G., Ahn Y. C.: A fully integrated, monolithic, cryogenic charge sensitive preamplifier using N-channel JFETs and polysilicon resistors. IEEE Trans on Nuclear Science, Vol. 41, no. 4, 1994, pp. 1240 – 1245. DOI 10.1109/23.322892

  277. Grosch T. O., Carpenter L.A.: Two-Port to Three-Port Noise Wave Transformation for CAD Applications. IEEE Trans. on MTT, vol. 41, no. 9, Sept. 1993, pp 1543 – 1548. DOI 10.1109/22.245675

  278. Wurtz L.T., Wheless W.P., Jr.: Design of a low-noise, radiation-hardened charge preamplifier. Proc. of IEEE Southeastcon (SECON), 1993, pp. 6 DOI 10.1109/SECON.1993.465735

  279. Baker B. C.: Noise Sources in Applications Using Capacitive Coupled Isolated Amplifiers. Burr-Brown, 1993, Application Bulletin AB-047.

  280. Jacobsen G.: Multichannel system design using optical preamplifiers and accounting for the effects of phase noise, amplifier noise, and receiver noise. Journal of Lightwave Technology, Vol. 10, no. 3, 1992, pp. 367 – 377. DOI 10.1109/50.124500

  281. Jorgensen B.F., Mikkelsen B., Mahon C.J.: Analysis of optical amplifier noise in coherent optical communication systems with optical image rejection receivers. Journal of Lightwave Technology, Vol. 10, no. 5, 1992, pp. 660 – 671. DOI 10.1109/50.136102

  282. Wait D. F.: Measurement Accuracies for Various Techniques for Measuring Amplifier Noise. ARFTG Conf. Digest-Spring, Vol. 21, 1992, pp. 43 – 52. DOI 10.1109/ARFTG.1992.326971

  283. Baker B. C.: Improved Device Noise Performance for the 3650 Isolation Amplifier. Burr-Brown, 1992, Appl. Bulletin AB-044.

  284. Agouridis D.C.: Comments on 'Noise Performance of Operational Amplifier Circuits'. IEEE Trans. on Educ., Vol. 35 no. 1, Feb. 1992, pp 98. DOI 10.1109/13.123425

  285. Hagen J. B.: Noise Parameter Transformation for Three Terminal Amplifiers. IEEE Trans. on MTT, vol. 38, no. 3, March 1990, pp 319 – 321. DOI 10.1109/22.45351

  286. Aho J., Halonen K.: Noise optimization of BiCMOS operational amplifiers. IEEE Int. Symp on Circuits and Systems (ISCAS), Vol. 4, 1990, pp. 3201 – 3204. DOI 10.1109/ISCAS.1990.112693

  287. Walker G.R., Steele R.C., Walker N.G.: Optical amplifier noise figure in a coherent optical transmission system. Journal of Lightwave Technology, Vol. 8, no. 9, 1990, pp. 1409 – 1413. DOI 10.1109/50.59172

  288. Trofimenkoff F.N., Onwuachi O. A.: Noise Performance of Operational Amplifier Circuits. IEEE Trans. on Education, vol. E-32, Feb. 1989, pp 12 – 16. DOI 10.1109/13.21156

  289. Niclas K.B., Chang A.P.: Noise in two-tier matrix amplifiers. IEEE Trans on MTT, vol. 36, no. 1, 1988, pp. 11 – 20. DOI 10.1109/22.3476

  290. A. Rich: Noise Calculation in Op Amp Circuits. Linear Technology, Design Notes, 15, September 1988.

  291. Ward H.R.: A Method for Measuring Pulsed Amplifier Noise Using a Spectrum Analyzer. IEEE Trans on EMC, Vol. EMC-27, no. 2, 1985, pp. 99 – 100. DOI 10.1109/TEMC.1985.304262

  292. Loudon R.: Theory of noise accumulation in linear optical-amplifier chains. IEEE Journal of Quantum Electronics, Vol. 21, no. 7 1985, pp. 766 – 773. DOI 10.1109/JQE.1985.1072735

  293. Smith S. W.: Internal noise of low‐frequency preamplifiers. Review of Scientific Instruments, Vol. 55, no. 5, 1984, pp. 812 – 813. DOI 10.1063/1.1137833

  294. Niclas K. B., Tucker B. A.: On Noise in Distributed Amplifiers at Microwave Frequencies. IEEE Trans. on MTT, vol. MTT-31, no. 8, Aug. 1983, pp 661 – 668. DOI 10.1109/TMTT.1983.1131565

  295. Kuzmin L., Likharev K., Migulin V., Zorin A.: Quantum noise in Josephson-junction parametric amplifiers. IEEE Trans on Magnetics, 1983, Vol. 19, no. 3, pp. 618 – 621. DOI 10.1109/TMAG.1983.1062472

  296. Niclas K. B.: Noise in Broad-Band GaAs MESFET Amplifiers with Parallel Feedback. IEEE Trans. on MTT, vol. MTT-30, no. 1, Jan. 1982, pp 63 – 70. DOI 10.1109/TMTT.1982.1131018

  297. El-Diwany M. H., Roulston D. J., Chamberlain S.G.: Design of Low-Noise Bipolar Transimpedance Preamplifiers for Optical Receivers. IEE Proceedings G: Electronic Circuits & Syst. vol. 128, no. 6, Dec. 1981, pp 299 – 305. DOI 10.1049/ip-g-1:19810069

  298. Moustakas S., Hullett J. L.: Noise Modelling for Broadband Amplifier Design. IEE Proc. G: Electronic Circuits & Systems, no. 2, April 1981, pp 67 – 76. DOI 10.1049/ip-g-1:19810014

  299. Shinriki M., Kishimoto A., Sasase I., Mori S.: Signal-to-Noise Ratio of the nth Law Amplifier for Non-Gaussian Noise. IEEE Trans on Communications, Vol. 28, no. 9, 1980, pp. 1747 – 1753. DOI 10.1109/TCOM.1980.1094841

  300. Weinreb S.: Low-Noise Cooled GASFET Amplifiers. IEEE Trans on MTT, Vol. 28, no. 10, 1980, pp. 1041 – 1054. DOI 10.1109/TMTT.1980.1130223

  301. Roberts J.A., Tsui E.T., Watson D.C.: Signal-to-noise ratio evaluations for nonlinear amplifiers. IEEE Trans. Commun., 1979, COM-27, pp. 197 – 201. DOI 10.1109/TCOM.1979.1094260

  302. J.W. Haslett, A. Krausas: Noise Reduction in Integrated Norton Amplifiers. Proc. IEE (London), Vol. 124, no. 12, 1977, pp. 1121 – 1124. DOI 10.1049/piee.1977.0235

  303. Haslett J.W.: Noise Performance Limitations of Single Amplifier RC Active Filters. IEEE Trans. on CAS, 1975, pp. 743 - 747. DOI 10.1109/TCS.1975.1084117

  304. Haslett J. W.: Noise Performance of the New Norton Op Amps. IEEE Trans on Electron Devices, vol. ED-21, no. 9, Sept. 1974, pp 571 – 577. DOI 10.1109/T-ED.1974.17968

  305. Sherwin J.: Noise Specs Confusing ?. National Semiconductor, Applic. Note 104, May 1974.

  306. Elad E.: Drain Feedback - A Novel Feedback Technique for Low-Noise Cryogenic Preamplifiers. IEEE Trans on Nuclear Science, Vol. 19, no. 1, 1972, pp. 403 – 411. DOI 10.1109/TNS.1972.4326541

  307. Letzter S., Webster N.: Noise in Amplifiers. IEEE Spectrum, vol. 7, Aug. 1970, pp 67 – 75. DOI 10.1109/MSPEC.1970.5213514

  308. Engen G. F.: A New Method of Characterizing Amplifier Noise Performance. IEEE Trans on Instr. & Meas., Vol. 19, no. 4, 1970, pp. 344 – 349. DOI 10.1109/TIM.1970.4313925

  309. Kern H. E., McKenzie J. M.: Methods of Reducing Noise of Junction Field Effect Transistor (JFET) Amplifiers. IEEE Trans on Nuclear Science, Vol. 17, no. 1, 1970, pp. 260 – 268. DOI 10.1109/TNS.1970.4325587

  310. Wadhwa R.P., Misra V.K., Sidhu G.S.: Studies of crossed field amplifiers relating to stability, noise and electron guns. 1968 Int. Electron Devices Meeting , vol. 14, pp. 28, 1968 DOI 10.1109/IEDM.1968.187957

  311. Blankenship J. L.: Design of Low-Noise Vacuum-Tube Pulse Amplifiers for Semiconductor Radiation-Detector Spectroscopy. IEEE Trans on Nuclear Science, Vol. 11, no. 3, 1964, pp. 373 – 381. DOI 10.1109/TNS.1964.4323450

  312. Heffner H.: The Fundamental Noise Limit of Linear Amplifiers. Proc of IRE, July 1962, pp 1604 – 1608. DOI 10.1109/JRPROC.1962.288130

  313. Hearn R., Bennett R.J., Wind B.A.: Some types of low noise amplifier. Journal of the British Institution of Radio Engineers, Vol. 22, no. 5, 1961, pp. 393 – 403. DOI 10.1049/jbire.1961.0133

  314. B. Carter: Op Amp Noise Theory and Applications. In: Op Amps for Everyone, Texas Instruments, Literature Number: SLOD006A, Chapter 10, pp 10-1 – 10-23.

Copyright 2010 © UNESCO - All Rights Reserved.