Home
Glossary
Acronyms
Beware
Contact
 
 

AMPLIFIER NOISE

Rest, rest, perturbed spirit”

(W. Shakespeare, Cymbeline)

  1. Akita Ippei, Haibi Hicham, Ishida Makoto: A low-noise small-area operational amplifier using split active-feedback compensation technique. Analog Integrated Circuits & Signal Processing, Vol. 96, no. 3, 2018, pp. 555 – 564. DOI 10.1007/s10470-018-1184-7

  2. Ito H., Ishibashi T.: Low-noise heterodyne detection of terahertz waves at room temperature using zero-biased Fermi-level managed barrier diode. Electronics Lett., Vol. 54, no. 18, 2018, pp. 1080 – 1081. DOI 10.1049/el.2018.5879

  3. Inoue Kyo: Quantum noise of parametric amplification in a phase-sensitive/insensitive intermediate condition. J. of the Optical Society of America B - Optical Physics, Vol. 35, no. 8, 2018, pp. 1939 – 1949. DOI 10.1364/JOSAB.35.001939

  4. Kim Hyun-Sik: A High-SNR and Process-insensitive CMOS Capacitive Transimpedance Amplifier with Finely Tunable Conversion Gain. J. of Semiconductor Technology & Science, Vol. 18, no. 5, 2018, pp. 578 – 585. DOI 10.5573/JSTS.2018.18.5.578

  5. Dadashi Ali, Berg Yngvar, Mirmotahari Omid: Energy-efficient, fast-settling, modified nested-current-mirror, single-stage-amplifier for high-resolution LCDs in 90-nm CMOS. Analog Integrated Circuits & Signal Processing, Vol. 97, no. 2, Special Issue: SI, 2018, pp. 253 – 259. DOI 10.1007/s10470-018-1220-7

  6. Li Tenglong, Zha Congwen, Sun Yinhong, et al.: 3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser. Laser Physics, Vol. 28, no. 10, 2018, Article # 105101. DOI 10.1088/1555-6611/aace37

  7. Zhang Hanwei, Zhou Pu, Xiao Hu, et al.: Toward high-power nonlinear fiber amplifier. High Power Laser Science and EngIneering, Vol. 6, 2018, Article # e51. DOI 10.1017/hpl.2018.45

  8. Bouchami Anoir, Elsayed Mohannad Y., Nabki Frederic: A 1.4-mW 14-MHz MEMS Oscillator Based on a Differential Adjustable-Bandwidth Transimpedance Amplifier and Piezoelectric Disk Resonator. IEEE Trans on CAS I : Regular Papers, Vol. 65, no. 10, 2018, pp. 3414 – 3423. DOI 10.1109/TCSI.2018.2835419

  9. Zeng Ji, Teo Jonathan, Banerjee Areen, et al.: A Synthetic Microbial Operational Amplifier. ACS Synthetic Biology, Vol. 7, no. 9, 2018, pp. 2007 – 2013. DOI 10.1021/acssynbio.8b00138

  10. Coskun Akif Alperen, Atalar Abdullah: Noise Figure of a Balanced Amplifier. IEEE Trans on CAS II : Express Briefs, Vol. 65, no. 9, 2018, pp. 1129 – 1133. DOI 10.1109/TCSII.2018.2801759

  11. Wei Rongshan, Liu Zhangwang, Zhu Rui: Low noise chopper-stabilized instrumentation amplifier with a ripple reduction loop. Analog Integrated Circuits & Signal Processing, Vol. 96, no. 3, 2018, pp. 521 – 529. DOI 10.1007/s10470-018-1214-5

  12. Sanjay R., Rajan V. Senthil, Venkataramani B.: A low-power low-noise and high swing biopotential amplifier in 0.18 A mu m CMOS. Analog Integrated Circuits & Signal Processing, Vol. 96, no. 3, 2018, pp. 565 – 576. DOI 10.1007/s10470-018-1207-4

  13. Yin Tao, Huang Guocheng, Xu Xiaodong, et al.: A 790 nW Low-Noise Instrumentation Amplifier for Bio-Sensing Based on Gm-RSC Structure. J. of Circuits, Systems & Computers, Vol. 27, no. 10, 2018, Article # 1850157. DOI 10.1142/S0218126618501578

  14. Lu Xiaoming, Wang Xinliang, Leng Yuxin, et al.: Suppressing Temporal Pedestal in Nd:glass Laser Systems by Avoiding Far-Field Spectral Phase Noise. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 24, no. 5, 2018, Article # 8800506. DOI 10.1109/JSTQE.2017.2785291

  15. Li Jiaxiong, Cai Chengkun, Du Jiangbing, et al.: Ultra-Low-Noise Mode-Division Multiplexed WDM Transmission over 100-km FMF Based on a Second-Order Few-Mode Raman Amplifier. J. of Lightwave Technology, Vol. 36, no. 16, 2018, pp. 3254 – 3260. DOI 10.1109/JLT.2018.2839710

  16. Kim Jong Pal, Lee Hankyu, Ko Hyoungho: 0.6 V, 116 nW Neural Spike Acquisition IC with Self-Biased Instrumentation Amplifier and Analog Spike Extraction. Sensors, Vol. 18, no. 8, 2018, Article # 2460. DOI 10.3390/s18082460

  17. Deng Z., He L., Liu F., et al.: An ultra-low noise cryogenic CMOS charge sensitive preamplifier for large volume point-contact HPGe detectors. J. of Instrumentation, Vol. 13, 2018, Article # P08019. DOI 10.1088/1748-0221/13/08/P08019

  18. Kim Hyung Seok, Cha Hyouk-Kyu: An Ultra Low-power Low-noise Neural Recording Analog Front-end IC for Implantable Devices. J. of Semiconductor Technology & Science, Vol. 18, no. 4, 2018, pp. 454 – 460. DOI 10.5573/JSTS.2018.18.4.454

  19. Kim Doyoon, Kim Sooyeon, Song Kiryong, et al.: Characterization of a CMOS 135-GHz Low Noise Amplifier with Two Different Noise Measurement Methods. J. of Semiconductor Technology & Science, Vol. 18, no. 4, 2018, pp. 536 – 540. DOI 10.5573/JSTS.2018.18.4.536

  20. Hao Shilei, Hu Tongning, Gu Qun Jane: Time-Amplifier Enhanced Phase Noise Filter. IEEE Microwave & Wireless Comp. Lett., Vol. 28, no. 8, 2018, pp. 699 – 701. DOI 10.1109/LMWC.2018.2845941

  21. Wang Jing, Ma Jingui, Yuan Peng, et al.: In-Band Noise Filtering via Spatio-Spectral Coupling. Laser & Photonics Reviews, Vol. 12, no. 8, 2018, Article # 1700316. DOI 10.1002/lpor.201700316

  22. Gong Yunyi, Cho Moon-Kyu, Song Ickhyun, et al.: A 28-GHz Switchless, SiGe Bidirectional Amplifier Using Neutralized Common-Emitter Differential Pair. IEEE Microwave & Wireless Comp. Lett., Vol. 28, no. 8, 2018, pp. 717 – 719. DOI 10.1109/LMWC.2018.2844166

  23. Lahiani Sawssen, Ben Salem Samir, Daoud Houda, et al.: A CMOS Low-Power Digital Variable Gain Amplifier Design for a Cognitive Radio Receiver "Application for IEEE 802.22 Standard". J. of Circuits, Systems & Computers, Vol. 27, no. 9, 2018, Article # 1850135. DOI 10.1142/S0218126618501359

  24. Asobe Masaki, Umeki Takeshi, Tadanaga Osamu: Phase Sensitive Amplifier Using Periodically Poled LiNbO3 Waveguides and Their Applications. IEICE Trans on Electronics, Vol. E101C, no. 7, 2018, pp. 586 – 593. DOI 10.1587/transele.E101.C.586

  25. Ono Hirotaka, Yamada Makoto: Applicability of a model with average inversion level to a cladding-pumped multicore erbium-doped fiber amplifier. Applied Optics, Vol. 57, no. 14, 2018, pp. 3747 – 3755. DOI 10.1364/AO.57.003747

  26. Pearlman Marcus, Browning Jim: Simulation of a Distributed Cathode in a Linear-Format Crossed-Field Amplifier. IEEE Trans on Plasma Science, Vol. 46, no. 7, Part: 3, 2018, pp. 2497 – 2504. DOI 10.1109/TPS.2018.2844732

  27. Wu Chen-Mao, Chen Hsiao-Chin, Yen Ming-Yu, et al.: Chopper-Stabilized Instrumentation Amplifier with Automatic Frequency Tuning Loop. Micromachines, Vol. 9, no. 6, 2018, Article # 289. DOI 10.3390/mi9060289

  28. Yi Shipeng, Du Zhengwei: The influence of microwave pulse width on the thermal burnout effect of an LNA constructed by a GaAs PHEMT. Microelectronics Reliability, Vol. 85, 2018, pp. 140 – 147. DOI 10.1016/j.microrel.2018.04.016

  29. Yang Wuhao, Wei Jian: Cryogenic amplifier with low input-referred voltage noise calibrated by shot noise measurement. Chinese Physics B, Vol. 27, no. 6, 2018, Article # 060702. DOI 10.1088/1674-1056/27/6/060702

  30. Turkmen Esref, Burak Abdurrahman, Guner Alper, et al.: A SiGe HBT D-Band LNA with Butterworth Response and Noise Reduction Technique. IEEE Microwave & Wireless Comp. Lett., Vol. 28, no. 6, 2018, pp. 524 – 526. DOI 10.1109/LMWC.2018.2831450

  31. Vyshnevyy Andrey A., Fedyanin Dmitry Yu: Noise reduction in plasmonic amplifiers. Applied Physics Express, Vol. 11, no. 6, 2018, Article # 062002. DOI 10.7567/APEX.11.062002

  32. Eskandari R., Ebrahimi A., Sobhi J.: A wideband noise cancelling balun LNA employing current reuse technique. Microelectronics J., Vol. 76, 2018, pp. 1 – 7. DOI 10.1016/j.mejo.2018.04.006

  33. Hao S., Hu T., Gu Q.: 10 GHz inverter-type-time-amplifier based phase noise filter with-133 dBc/Hz phase noise sensitivity. Electronics Lett., Vol. 54, no. 11, 2018, pp. 689 – 690. DOI 10.1049/el.2018.0622

  34. Kumar Chakresh, Goyal Rakesh: L-Band Flat-Gain Raman with Erbium-Doped Fluoride Hybrid Optical Amplifier for Superdense Wavelength Division Multiplexing System. J. of Russian Laser Research, Vol. 39, no. 3, 2018, pp. 263 – 266. DOI 10.1007/s10946-018-9716-2

  35. Al-Azzawi Alabbas A., Almukhtar Aya A., Reddy P.H., et al.: A Flat-Gain Double-Pass Amplifier with New Hafnia-Bismuth-Erbium Codoped Fiber. Chinese Physics Lett., Vol. 35, no. 5, 2018, Article # 054206. DOI 10.1088/0256-307X/35/5/054206

  36. Steinke Michael, Tuennermann Henrik, Kuhn Vincent, et al.: Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 24, no. 3, 2018, Article # 3100613. DOI 10.1109/JSTQE.2017.2759275

  37. Miguez Matias R., Gak Joel, Arnaud Alfredo, et al.: A current-reuse biomedical amplifier with a NEF < 1. Analog Integrated Circuits & Signal Processing, Vol. 95, no. 2, 2018, pp. 283 – 294. DOI 10.1007/s10470-018-1175-8

  38. Hammar A., Sobis P., Drakinskiy V., et al.: Low noise 874 GHz receivers for the International Submillimetre Airborne Radiometer (ISMAR). Review of Scientific Instruments, Vol. 89, no. 5, 2018, Article # 055104. DOI 10.1063/1.5017583

  39. Pan Xiaozhou, Chen Hui, Wei Tianxiang, et al.: Experimental realization of a feedback optical parametric amplifier with four-wave mixing. Physical Review B, Vol. 97, no. 16, 2018, Article # 161115. DOI 10.1103/PhysRevB.97.161115

  40. Du N., Force N., Khatiwada R., et al.: Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment. Group Author(s): ADMX Collaboration, Physical Review Lett., Vol. 120, no. 15, 2018, Article # 151301. DOI 10.1103/PhysRevLett.120.151301

  41. Franson J.D., Brewster R.A.: Effects of entanglement in an ideal optical amplifier. Physics Lett. A, Vol. 382, no. 13, 2018, pp. 887 – 893. DOI 10.1016/j.physleta.2018.01.032

  42. Bergeal Nicolas: Microwave amplifiers keep the noise down. Nature Electronics, Vol. 1, no. 4, 2018, pp. 210 – 211. DOI 10.1038/s41928-018-0062-8

  43. Liu Zhenlong, Chen Xiaojie, Yang Menglin, et al.: Experimental Studies on a 1-kW High-Gain S-Band Magnetron Amplifier with Output Phase Control Based on Load-Pull Characterization. IEEE Trans on Plasma Science, Vol. 46, no. 4, Part: 2, 2018, pp. 909 – 916. DOI 10.1109/TPS.2018.2814598

  44. Dorosz P., Baszczyk M., Kucewicz W., et al.: Low-Power Front-End ASIC for Silicon Photomultiplier. IEEE Trans on Nuclear Science, Vol. 65, no. 4, 2018, pp. 1070 – 1078. DOI 10.1109/TNS.2018.2816239

  45. Hussain Muhammad Waqar, Elahipanah Hossein, Schroder Stephan, et al.: An Intermediate Frequency Amplifier for High-Temperature Applications. IEEE Trans on ED, Vol. 65, no. 4, 2018, pp. 1411 – 1418. DOI 10.1109/TED.2018.2804392

  46. Tamilchelvan R., Senthilkumar V. Jawahar: Design and Optimization of Wideband Microwave Amplifier Using Nonlinear Technique. Wireless Personal Communications, Vol. 99, no. 4, 2018, pp. 1589 – 1604. DOI 10.1007/s11277-018-5293-5

  47. Zheng Jiawei, Ki Wing-Hung, Tsui Chi-Ying: Analysis and Design of a Ripple Reduction Chopper Bandpass Amplifier. IEEE Trans on CAS I : Regular Papers, Vol. 65, no. 4, 2018, pp. 1185 – 1195. DOI 10.1109/TCSI.2017.2751970

  48. Barth Ido, Fisch Nathaniel J.: Multifrequency Raman amplifiers. Physical Review E, Vol. 97, no. 3, 2018, Article # 033201. DOI 10.1103/PhysRevE.97.033201

  49. Yan Tao, Zhang Yonghua, Li Ping, et al.: Study of microwave damage effect on HEMT low noise amplifier under different drain voltage bias. Microelectronics Reliability, Vol. 82, 2018, pp. 228 – 234. DOI 10.1016/j.microrel.2017.10.028

  50. Baek Ji-Eun, Cho Young-Maan, Ko Kwang-Cheol: Analysis of Design Parameters Reducing the Damage Rate of Low-Noise Amplifiers Affected by High-Power Electromagnetic Pulses. IEEE Trans on Plasma Science, Vol. 46, no. 3, 2018, pp. 524 – 529. DOI 10.1109/TPS.2018.2794973

  51. Parveg Dristy, Varonen Mikko, Karac Denizhan, et al.: Design of a D-Band CMOS Amplifier Utilizing Coupled Slow-Wave Coplanar Waveguides. IEEE Trans on MTT, Vol. 66, no. 3, 2018, pp. 1359 – 1373. DOI 10.1109/TMTT.2017.2777976

  52. Eldeeb Mohammed A., Ghallab Yehya H., Ismail Yehea, et al.: A 0.4-V Miniature CMOS Current Mode Instrumentation Amplifier. IEEE Trans on CAS II : Express Briefs, Vol. 65, no. 3, 2018, pp. 261 – 265. DOI 10.1109/TCSII.2017.2685589

  53. Shen Linxiao, Lu Nanshu, Sun Nan: A 1-V 0.25-mu W Inverter Stacking Amplifier with 1.07 Noise Efficiency Factor. IEEE Journal of Solid State Circ., Vol. 53, no. 3, 2018, pp. 896 – 905. DOI 10.1109/JSSC.2017.2786724

  54. Nozaki Kengo, Matsuo Shinji, Shinya Akihiko, et al.: Amplifier-Free Bias-Free Receiver Based on Low-Capacitance Nanophotodetector. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 24, no. 2, 2018, Article # 4900111. DOI 10.1109/JSTQE.2017.2777105

  55. Ribeiro Vitor, Lorences-Riesgo Abel, Andrekson Peter, et al.: Noise in phase-(in)sensitive dual-core fiber parametric amplification. Optics Express, Vol. 26, no. 4, 2018, pp. 4050 – 4059. DOI 10.1364/OE.26.004050

  56. Guo Ying, Li Renjie, Liao Qin, et al.: Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier. Physics Lett. A, Vol. 382, no. 6, 2018, pp. 372 – 381. DOI 10.1016/j.physleta.2017.12.011

  57. Luo Xianliang, Chen Yingmei, Atef Mohamed, et al.: A 44 Gbit/sWide-Dynamic Range and High-Linearity Transimpedance Amplifier in 130nm BiCMOS Technology. IEICE Trans on Fundamentals of Electronics, Communications & Computer Sciences, Vol. E101A, no. 2, 2018, pp. 438 – 440. DOI 10.1587/transfun.E101.A.438

  58. Lee Hojoon: Effect of Amplified Spontaneous Emission on the Gain Recovery of a Semiconductor Optical Amplifier. Korean J. of Optics & Photonics, Vol. 29, no. 1, 2018, pp. 32 – 39. DOI 10.3807/KJOP.2018.29.1.032

  59. Karimi-Bidhendi Alireza, Mohammadnezhad Hossein, Green Michael M., et al.: A Silicon-Based Low-Power Broadband Transimpedance Amplifier. IEEE Trans on CAS I : Regular Papers, Vol. 65, no. 2, 2018, pp. 498 – 509. DOI 10.1109/TCSI.2017.2733521

  60. Ma Rui, Liu Maliang, Zheng Hao, et al.: A 77-dB Dynamic Range Low-Power Variable-Gain Transimpedance Amplifier for Linear LADAR. IEEE Trans on CAS II : Express Briefs, Vol. 65, no. 2, 2018, pp. 171 – 175. DOI 10.1109/TCSII.2017.2684822

  61. Del Cesta Simone, Ria Andrea, Piotto Massimo, et al.: A compact current-mode instrumentation amplifier for general-purpose sensor interfaces. AEU-Int. Journal of Electronics & Comm., Vol. 92, 2018, pp. 8 – 14. DOI 10.1016/j.aeue.2018.05.013

  62. Liu Chang, Zhang Zhi, Wang Zhiping: A Wideband Low-Noise Amplifier with Active and Passive Cross-Coupled Feedbacks. IEICE Trans on Electronics, Vol. E101C, no. 1, 2018, pp. 82 – 90. DOI 10.1587/transele.E101.C.82

  63. Huang Shaomin, Yang Zhongpan, Hua Chao: A terahertz performance of hybrid single walled CNT based amplifier with analytical approach. J. of Circuits, Systems & Computers, Vol. 27, no. 1, 2018, Article # 1850003. DOI 10.1016/j.sse.2017.09.016

  64. Fanelli Duccio, Ginelli Francesco, Livi Roberto, et al.: Noise-driven neuromorphic tuned amplifier. Physical Review E, Vol. 96, no. 6, 2017, Article # 062313. DOI 10.1103/PhysRevE.96.062313

  65. Wang Hanqing, Mora-Puchalt Gerard, Lyden Colin, et al.: A 19 nV/root Hz Noise 2-mu V Offset 75-mu A Capacitive-Gain Amplifier with Switched-Capacitor ADC Driving Capability. IEEE Journal of Solid State Circ., Vol. 52, Special Issue: SI, no. 12, 2017, pp. 3194 – 3203. DOI 10.1109/JSSC.2017.2732728

  66. Durdaut Phillip, Penner Veronika, Kirchhof Christine, et al.: Noise of a JFET Charge Amplifier for Piezoelectric Sensors. IEEE Sensors Journal, Vol. 17, no. 22, 2017, pp. 7364 – 7371. DOI 10.1109/JSEN.2017.2759000

  67. Yaul Frank M., Chandrakasan Anantha P.: A Noise-Efficient 36 nV/root Hz Chopper Amplifier Using an Inverter-Based 0.2-V Supply Input Stage. IEEE Journal of Solid State Circ., Vol. 52, no. 11, 2017, pp. 3032 – 3042. DOI 10.1109/JSSC.2017.2746778

  68. Wang Jingru, Lui Jie, Wang Zhihong, et al.: Accuracy study for lock-in amplifiers in a scanning near-infrared spectrometer. IET Science, Measurement & Technology, Vol. 11, no. 7, 2017, pp. 886 – 891. DOI 10.1049/iet-smt.2016.0440

  69. Gervasoni G., Carminati M., Ferrari G.: Switched ratiometric lock-in amplifier enabling sub-ppm measurements in a wide frequency range. Review of Scientific Instruments, Vol. 88, no. 10, 2017, Article # 104704. DOI 10.1063/1.4996423

  70. Bercan Damjan, Sesek Aleksander, Trontelj Janez: Design of Operational Transconductance Amplifier with Temperature Compensation. Informacije MIDEM – J. of Microelectronics Electronic Components & Materials, Vol. 47, no. 3, 2017, pp. 187 – 192.

  71. Huang Keqiang, Guo Qiujiang, Song Chao, et al.: Fabrication and characterization of ultra-low noise narrow and wide band Josephson parametric amplifiers. Chinese Physics B, Vol. 26, no. 9, 2017, Article # 094203. DOI 10.1088/1674-1056/26/9/094203

  72. Coskun Akif Alperen, Atalar Abdullah: Noise Figure Degradation in Balanced Amplifiers. IEEE Microwave & Wireless Comp. Lett., Vol. 27, no. 9, 2017, pp. 848 – 850. DOI 10.1109/LMWC.2017.2734745

  73. Maerki P., Braem B.A., Ihn T.: Temperature-stabilized differential amplifier for low-noise DC measurements. Review of Scientific Instruments, Vol. 88, no. 8, 2017, Article # 085106. DOI 10.1063/1.4997963

  74. Kulej Tomasz, Khateb Fabian: 0.3-V bulk-driven programmable gain amplifier in 0.18-mu m CMOS. Int. J. of Circuit Theory and Applications, Vol. 45, no. 8, 2017, pp. 1077 – 1094. DOI 10.1002/cta.2269

  75. Chang Sun-Il, Park Sung-Yun, Yoon Euisik: Low-Power Low-Noise Pseudo-Open-Loop Preamplifier for Neural Interfaces. IEEE Sensors Journal, Vol. 17, no. 15, 2017, pp. 4843 – 4852. DOI 10.1109/JSEN.2017.2717787

  76. Vesterinen Visa, Saira Olli-Pentti, Raisanen Ilmo, et al.: Lumped-element Josephson parametric amplifier at 650MHz for nano-calorimeter readout. Superconductor Science & Technology, Vol. 30, no. 8, 2017, Article # 085001. DOI 10.1088/1361-6668/aa73ed

  77. Kaiser W., Haider M., Russer J.A., et al.: Quantum theory of the dissipative Josephson parametric amplifier. Int. J. of Circuit Theory and Applications, Vol. 45, no. 7, Special Issue: SI, 2017, pp. 864 – 881. DOI 10.1002/cta.2354

  78. Kaiser W., Haider M., Russer J.A., et al.: Quantum theory of the dissipative Josephson parametric amplifier. Int. J. of Circuit Theory and Applications, Vol. 45, no. 7, Special Issue: SI, 2017, pp. 864 – 881. DOI 10.1002/cta.2354

  79. Groner Samuel, Polak Martin: Low-Distortion, Low-Noise Composite Operational Amplifier. J. of the Audio Engineering Society, Vol. 65, no. 5, 2017, pp. 402 – 407. DOI 10.17743/jaes.2017.0008

  80. Sitnikov A., Kalabukhova E., Oliynyk V., et al.: A Q-band low noise GaAs pHEMT MMIC power amplifier for pulse electron spin. Review of Scientific Instruments, Vol. 88, no. 5, 2017, Article # 054702. DOI 10.1063/1.4983574

  81. Kim Dong-Hyun, Kim Doyoon, Rieh Jae-Sung: A D-Band CMOS Amplifier with a New Dual-Frequency Interstage Matching Technique. IEEE Trans on MTT, Vol. 65, no. 5, Part: 1, 2017, pp. 1580 – 1588. DOI 10.1109/TMTT.2017.2655508

  82. Maundy B.J., Ozoguz Serdar, Elwakil A.S., et al.: The common-base differential amplifier and applications revisited. Microelectronics J., Vol. 63, 2017, pp. 8 – 19. DOI 10.1016/j.mejo.2017.02.014

  83. Chaudhuri S., Li D., Irwin K.D., et al.: Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines. Applied Physics Lett., Vol. 110, no. 15, 2017, Article # 152601. DOI 10.1063/1.4980102

  84. Seljak A., Cumming H.S., Varner G., et al.: A fast, low power and low noise charge sensitive amplifier ASIC for a UV imaging single photon detector. J. of Instrumentation, Vol. 12, 2017, Article # T04007. DOI 10.1088/1748-0221/12/04/T04007

  85. Montezuma Paulo, Dinis Rui, Ribeiro Sara, et al.: Two Methods for Estimation of Amplifier Imbalances in Multi-Amplifier Transmission Structures. RadioEngineering, Vol. 26, no. 1, 2017, pp. 285 – 290. DOI 10.13164/re.2017.0285

  86. Grasso Alfio Dario, Palumbo Gaetano, Pennisi Salvatore, et al.: The noise performance of CMOS Miller operational transconductance amplifiers with embedded current-buffer frequency compensation. Int. J. of Circuit Theory and Applications, Vol. 45, no. 4, 2017, pp. 457 – 465. DOI 10.1002/cta.2273

  87. Butti Federico, Piotto Massimo, Bruschi Paolo: A Chopper Instrumentation Amplifier with Input Resistance Boosting by Means of Synchronous Dynamic Element Matching. IEEE Trans on CAS I : Regular Papers, Vol. 64, no. 4, 2017, pp. 753 – 764. DOI 10.1109/TCSI.2016.2633384

  88. Nagymihaly R.S., Jojart P., Borzsonyi A., et al.: Spectral phase noise analysis of a cryogenically cooled Ti:Sapphire amplifier. Optics Express, Vol. 25, no. 6, 2017, pp. 6690 – 6699. DOI 10.1364/OE.25.006690

  89. Gao Zhiqiang, Luan Bo, Zhao Jincai, et al.: An integrated low 1/f noise and high-sensitivity CMOS instrumentation amplifier for TMR sensors. Modern Physics Lett. B, Vol. 31, no. 8, 2017, Article # 1750070. DOI 10.1142/S0217984917500701

  90. Zhi Menghui, Tang Liang, Qiao Donghai: Phase noise analysis of voltage controlled oscillator used in cesium atomic clock. Int. J. of Modern Physics B, Vol. 31, no. 7, 2017, Article # 1741005. DOI 10.1142/S0217979217410053

  91. Erickson R.P., Pappas D.P.: Theory of multiwave mixing within the superconducting kinetic-inductance traveling-wave amplifier. Physical Review B, Vol. 95, no. 10, 2017, Article # 104506. DOI 10.1103/PhysRevB.95.104506

  92. Saadi Rokhsare Izadi, Hakimi Ahmad: Low-power and low-noise complementary metal oxide semiconductor distributed amplifier using the gain-peaking technique. Int. J. of Circuit Theory and Applications, Vol. 45, no. 3, 2017, pp. 319 – 337. DOI 10.1002/cta.2226

  93. Tey Yong-Yuen, Ramiah Harikrishnan, Noh Norlaili Mohd, et al.: A 50 MHz similar to 10 GHz, 3.3 dB NF, +6 dBm IIP3 resistive feedback common source amplifier for cognitive radio application. Microelectronics J., Vol. 61, 2017, pp. 89 – 94. DOI 10.1016/j.mejo.2017.01.012

  94. Rizk M.R.M., Abou-Bakr Ehab, Nasser A.A.A., et al.: Full characterization of gain and noise boundaries for NFmin or unity SWRout operation. Analog Integrated Circuits & Signal Processing, Vol. 90, no. 3, 2017, pp. 605 – 613. DOI 10.1007/s10470-016-0906-y

  95. Liu Hongfei, Jin Chengjin, Cao Yang, et al.: High Linearity, Low Noise, L-Band Cryogenic Amplifier for Radio Astronomical Receivers. Microwave & Optical Techn. Lett., Vol. 59, no. 3, 2017, pp. 500 – 505. DOI 10.1002/mop.30334

  96. Lecocq F., Ranzani L., Peterson G.A., et al.: Nonreciprocal Microwave Signal Processing with a Field-Programmable Josephson Amplifier. Physical Review Applied, Vol. 7, no. 2, 2017, Article # 024028. DOI 10.1103/PhysRevApplied.7.024028

  97. Bagheri Arezu, Salam Muhammad Tariqus, Velazquez Jose Luis Perez, et al.: Low-Frequency Noise and Offset Rejection in DC-Coupled Neural Amplifiers: A Review and Digitally-Assisted Design Tutorial. IEEE Trans. on Biomedical Circuits and Systems, Vol. 11, no. 1, 2017, pp. 161 – 176. DOI 10.1109/TBCAS.2016.2539518

  98. Chen Jun, Guo Benqing, Zhang Boyang, et al.: A Highly Linear Wideband CMOS LNTA Employing Noise/Distortion Cancellation and Gain Compensation. Circuits Systems & Signal Processing, Vol. 36, no. 2, 2017, pp. 474 – 494. DOI 10.1007/s00034-016-0320-9

  99. Gao Qian, Xie Sheng, Mao Luhong, et al.: A single-to-differential broadband transimpedance amplifier for 12.5Gb/s optical links. IEICE Electronics Express, Vol. 14, no. 2, 2017, Article # 20161153. DOI 10.1587/elex.13.20161153

  100. Asgari Vahid, Belostotski Leonid: A highly linear wideband 0.3-to-2.7 GHz variable-gain amplifier. Analog Integrated Circuits & Signal Processing, Vol. 91, no. 3, 2017, pp. 473 – 478. DOI 10.1007/s10470-017-0948-9

  101. Huber Thomas, Quay Ruediger, Boesch Wolfgang: Noise Degradation of Cascodes in Broadband Power Amplifiers. Int. Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMiC), 2017. DOI 10.1109/INMMIC.2017.7927298

  102. Shen Linxiao, Lu Nanshu, Sun Nan: A 1V 0.25uW Inverter-Stacking Amplifier with 1.07 Noise Efficiency Factor. 31st Symp. on VLSI Circuits, 2017, pp. C140-C141. DOI 10.23919/VLSIC.2017.8008461

  103. Kolacinski Cezary, Obrebski Dariusz: Multichannel Integrated Lock-in Amplifier for Low Noise Measurements. 24th Int. Conf. Mixed Design of Integrated Circuits and Systems (MIXDES), 2017, pp. 290 – 295. DOI 10.23919/MIXDES.2017.8005218

  104. Lee Cheongmin, Kwon Kuduck: Transimpedance Amplifier Employing a New DC Offset Cancellation Method for WCDMA/LTE Applications. J. of Semiconductor Technology & Science, Vol. 16, no. 6, 2016, pp. 825 – 831. DOI 10.5573/JSTS.2016.16.6.825

  105. Teran Jose Vicente, de la Fuente Maria Luisa, Limiti Ernesto, et al.: Noise analysis in distributed amplifiers with feedback-active load. IET Microwaves Antennas & Propagation, Vol. 10, no. 15, 2016, pp. 1692 – 1700. DOI 10.1049/iet-map.2016.0106

  106. Vyshnevyy Andrey A., Fedyanin Dmitry Yu: Spontaneous Emission and Fundamental Limitations on the Signal-to-Noise Ratio in Deep-Subwavelength Plasmonic Waveguide Structures with Gain. Physical Review Applied, Vol. 6, no. 6, 2016, Article # 064024. DOI 10.1103/PhysRevApplied.6.064024

  107. Bian Zi-Peng, Zhang Ming-Ming, Wu Hsien-Shun, et al.: 22-27GHz 11dB inductive feedback cascode amplifier with 12 picoseconds group delay variation. IEICE Electronics Express, Vol. 13, no. 24, 2016, Article # 20160862. DOI 10.1587/elex.13.20160862

  108. Khamis Mustafa A., Ennser Karin: Theoretical Model of a Thulium-Doped Fiber Amplifier Pumped at 1570 nm and 793 nm in the Presence of Cross Relaxation. J. of Lightwave Technology, Vol. 34, no. 24, 2016, pp. 5675 – 5681. DOI 10.1109/JLT.2016.2631635

  109. Raja R., Theegala Ramesh, Venkataramani B.: A Low-Power and Highly Linear Merged Low Noise Amplifier-Mixer for Wireless Sensor Network Applications. J. of Low Power Electronics, Vol. 12, no. 4, 2016, pp. 368 – 384. DOI 10.1166/jolpe.2016.1455

  110. Zhou Zhijun, Warr Paul A.: A High Input Impedance Low Noise Integrated Front-End Amplifier for Neural Monitoring. IEEE Trans. on Biomedical Circuits and Systems, Vol. 10, no. 6, 2016, pp. 1079 – 1086. DOI 10.1109/TBCAS.2016.2525810

  111. Saidulu Bellamkonda, Manoharan Arun, Sundaram Kumaravel: Low Noise Low Power CMOS Telescopic-OTA for Bio-Medical Applications. Computers, Vol. 5, no. 4, 2016, Article # 25. DOI 10.3390/computers5040025

  112. Wang Wen-Chieh, Lin Yu-Hsin: A 118 dB PSRR, 0.00067% (-103.5 dB) THD+N and 3.1 W Fully Differential Class-D Audio Amplifier with PWM Common Mode Control. IEEE Journal of Solid State Circ., Vol. 51, no. 12, Special Issue: SI, 2016, pp. 2808 – 2818. DOI 10.1109/JSSC.2016.2591828

  113. Song Shuang, Rooijakkers Michael J., Harpe Pieter, et al.: A Noise Reconfigurable Current-Reuse Resistive Feedback Amplifier with Signal-Dependent Power Consumption for Fetal ECG Monitoring. IEEE Sensors Journal, Vol. 16, no. 23, 2016, pp. 8304 – 8313. DOI 10.1109/JSEN.2016.2589281

  114. Lu Hao, Li Wenjun, Lu Yeqing, et al.: Universal Charge-Conserving TFET SPICE Model Incorporating Gate Current and Noise. IEEE Journal on Exploratory Solid-State Computational Devices & Circuits, Vol. 2, 2016, pp. 20 – 27. DOI 10.1109/JXCDC.2016.2582204

  115. Liu Liping, Yao Hui, Liu Quanjun: Large Bandwidth Trans-Impedance Amplifier for Ion Current Nanopore System Detection Platform. J. of Nanoscience and Nanotechnology, Vol. 16, no. 12, 2016, pp. 12498 – 12506. DOI 10.1166/jnn.2016.12997

  116. Mogheyse Amir Hamze, Miar Naimi Hossein: Two-dimensional distributed amplifier by 2D-LC lattice. IET Microwaves Antennas & Propagation, Vol. 10, no. 14, 2016, pp. 1581 – 1590. DOI 10.1049/iet-map.2016.0551

  117. Wang Sijia, Chen Wei, Qin Peng, et al.: Spectral and temporal breathing self-similar evolution in a fiber amplifier for low-noise transform-limited pulse generation. Optics Lett., Vol. 41, no. 22, 2016, pp. 5286 – 5289. DOI 10.1364/OL.41.005286

  118. Ockeloen-Korppi C.F., Damskagg E., Pirkkalainen J.-M., et al.: Low-Noise Amplification and Frequency Conversion with a Multiport Microwave Optomechanical Device. Physical Review X, Vol. 6, no. 4, 2016, Article # 041024. DOI 10.1103/PhysRevX.6.041024

  119. Elkind J., Socher E.: Noise Figure Optimization Tool for Millimeter-Wave Receivers at Near-f(max) Frequencies. IEEE Trans on CAS II : Express Briefs, Vol. 63, no. 10, 2016, pp. 914 – 918. DOI 10.1109/TCSII.2016.2536259

  120. Fiori Franco: A Sensor Signal Amplifier Resilient to EMI. IEEE Sensors Journal, Vol. 16, no. 18, 2016, pp. 7008 – 7015. DOI 10.1109/JSEN.2016.2593603

  121. Fiori Franco: On the Susceptibility of Chopper Operational Amplifiers to EMI. IEEE Trans on EMC, Vol. 58, no. 4, Part: 1, 2016, pp. 1000 – 1006. DOI 10.1109/TEMC.2016.2544950

  122. Kobayashi Kevin W., Denninghoff Dan, Miller Dain: A Novel 100 MHz-45 GHz Input-Termination-Less Distributed Amplifier Design with Low-Frequency Low-Noise and High Linearity Implemented with a 6 Inch 0.15 mu m GaN-SiC Wafer Process Technology. IEEE Journal of Solid State Circ., Vol. 51, no. 9, 2016, pp. 2017 – 2026. DOI 10.1109/JSSC.2016.2558488

  123. Zhao Wulong, Liu Hongjun, Sun Qibing, et al.: Extracting signal via stochastic resonance in the semiconductor optical amplifier. Chinese Optics Lett., Vol. 14, no. 8, 2016, Article # 081901. DOI 10.3788/COL201614.081901

  124. Su Zhan, Kolbusz Janusz, Wilamowski Bogdan M.: Linearization of Bipolar Amplifiers Based on Neural-Network Training Algorithm. IEEE Trans on Industrial Electronics, Vol. 63, no. 6, 2016, pp. 3737 – 3744. DOI 10.1109/TIE.2016.2540582

  125. Corral Celestino A.: Design of microwave transistor amplifiers with optimum cascaded gain and noise. IET Microwaves Antennas & Propagation, Vol. 10, no. 11, 2016, pp. 1196 – 1203. DOI 10.1049/iet-map.2015.0803

  126. Gupta Neha, Chaujar Rishu: Influence of gate metal engineering on small-signal and noise behaviour of silicon nanowire MOSFET for low-noise amplifiers. Applied Physics A - Materials Science & Processing, Vol. 122, no. 8, 2016, Article # 717. DOI 10.1007/s00339-016-0239-9

  127. Bimana Abadahigwa, Sinha Saurabh: Increasing the Bandwidth of a SiGe HBT LNA with Minimum Impact on Noise Figure. Microwave & Optical Techn. Lett., Vol. 58, 2016, no. 8, pp. 1937 – 1944. DOI 10.1002/mop.29945

  128. De Marcellis Andrea, Ferri Giuseppe, D'Amico Arnaldo: One-Decade Frequency Range, In-Phase Auto-Aligned 1.8 V 2 mW Fully Analog CMOS Integrated Lock-In Amplifier for Small/Noisy Signal Detection. IEEE Sensors Journal, Vol. 16, no. 14, 2016, pp. 5690 – 5701. DOI 10.1109/JSEN.2016.2572732

  129. Strelkov P.S., Ivanov I.E., Shumeiko D.V.: Noise characteristics of a plasma relativistic microwave amplifier. Plasma Physics Reports, Vol. 42, no. 7, 2016, pp. 653 – 657. DOI 10.1134/S1063780X16070102

  130. Das Devarshi Mrinal, Srivastava Abhishek, Ananthapadmanabhan J., et al.: A novel low-noise fully differential CMOS instrumentation amplifier with 1.88 noise efficiency factor for biomedical and sensor applications. Microelectronics J., Vol. 53, 2016, pp. 35 – 44. DOI 10.1016/j.mejo.2016.04:008

  131. Attivissimo Filippo, Carducci Carlo Guarnieri Calo, Marzocca Cristoforo: A MATLAB-Based Method for Designing High-Gain Resonant Transimpedance Amplifiers. IEEE Sensors Journal, Vol. 16, no. 12, 2016, pp. 4828 – 4838. DOI 10.1109/JSEN.2016.2550659

  132. Nakhaei Roohollah, Almasinejad Peyman, Zahabi Mohammad: A simulation-based optimization of low noise amplifier design using PSO algorithm. Int. J. of Computer Science and Network Security, Vol. 16, no. 5, 2016, pp. 45 – 49. DOI pas Accession Number: WOS:000389058900007

  133. Combes Joshua, Walk Nathan, Lund A.P., et al.: Models of reduced-noise, probabilistic linear amplifiers. Physical Review A, Vol. 93, no. 5, 2016, Article # 052310. DOI 10.1103/PhysRevA.93.052310

  134. Kang Ying, Cheng Lijun, Yang Suhui, et al.: 50 W low noise dual-frequency laser fiber power amplifier. Optics Express, Vol. 24, no. 9, 2016, pp. 9202 – 9208. DOI 10.1364/OE.24.009202

  135. Crescentini Marco, Bennati Marco, Saha Shimul Chandra, et al.: A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording. Sensors, Vol. 16, no. 5, 2016, Article # 709. DOI 10.3390/s16050709

  136. Wang Peng, Ytterdal Trond: Low noise, -50 dB second harmonic distortion single-ended to differential switched-capacitive variable gain amplifier for ultrasound imaging. IET Circuits, Devices & Systems, Vol. 10, no. 3, 2016, pp. 173 – 180. DOI 10.1049/iet-cds.2014.0364

  137. Yu C., He Z.Z., Liu Q.B., et al.: Graphene Amplifier MMIC on SiC Substrate. IEEE ED Lett., Vol. 37, no. 5, 2016, pp. 684 – 687. DOI 10.1109/LED.2016.2544938

  138. Bai Wenbin, Zhu Zhangming: A 0.5-V power-efficient low-noise CMOS instrumentation amplifier for wireless biosensor. Microelectronics J., Vol. 51, 2016, pp. 30 – 37. DOI 10.1016/j.mejo.2016.02.007

  139. Lutz Gerhard, Porro Matteo, Aschauer Stefan, et al.: The DEPFET Sensor-Amplifier Structure: A Method to Beat 1/f Noise and Reach Sub-Electron Noise in Pixel Detectors. Sensors, Vol. 16, no. 5, 2016, Article # 608. DOI 10.3390/s16050608

  140. Yasuda Yohei, Nakano Nobuhiko: Multichannel Low-Noise Low-Power Amplifier for Neural Signal Acquisition. Electronics and Communications in Japan, Vol. 99, no. 5, 2016, pp. 62 – 73. DOI 10.1002/ecj.11816

  141. Ma Yonghua, Liu Hongjun, Sun Qibing, et al.: Reduction of phase noise to amplitude noise conversion in silicon waveguide-based phase-sensitive amplification. Applied Optics, Vol. 55, no. 12, 2016, pp. 3140 – 3144. DOI 10.1364/AO.55.003140

  142. Yamamoto Naoki: Quantum Feedback Amplification. Physical Review Applied, Vol. 5, no. 4, 2016, Article # 044012. DOI 10.1103/PhysRevApplied.5.044012

  143. Liu Lanqi, Lu Zhaojing, Zhang Kefeng, et al.: Wideband balun-LNA exploiting noise cancellation and g''m compensation technique. Electronics Lett., Vol. 52, no. 8, 2016, pp. 673 – 674. DOI 10.1049/el.2015.3887

  144. Sturm Johannes, Popuri Suchendranath, Xiang Xinbo: A 65 nm CMOS resistive feedback noise canceling LNA with tunable bandpass from 4.6 to 5.8 GHz. Analog Integrated Circuits & Signal Processing, Vol. 87, no. 2, Special Issue: SI, 2016, pp. 191 – 199. DOI 10.1007/s10470-015-0658-0

  145. Parker S.R.: Technical noise in K-band low-noise cryogenic amplifier. Electronics Lett., Vol. 52, no. 7, 2016, pp. 539 – 540. DOI 10.1049/el.2015.4024

  146. Kwon Inyong, Kang Taehoon, Wells Byron T., et al.: A High-Gain 1.75-GHz Dual-Inductor Transimpedance Amplifier with Gate Noise Suppression for Fast Radiation Detection. IEEE Trans on CAS II : Express Briefs, Vol. 63, no. 4, 2016, pp. 356 – 360. DOI 10.1109/TCSII.2015.2503583

  147. Varonen M., Safaripour A., Parveg D., et al.: 200-GHz CMOS amplifier with 9-dB noise figure for atmospheric remote sensing. Electronics Lett., Vol. 52, no. 5, 2016, pp. 369 – 370. DOI 10.1049/el.2015.3337

  148. Putra A.W. Setiawan, Makinoshima Kazuki, Yamada Minoru, et al.: Investigation of Frequency Noise and Spectrum Linewidth in Semiconductor Optical Amplifier. Jurnal Teknologi, Vol. 78, no. 3, 2016, pp. 155 – 165.

  149. Kim Jongpal, Ko Hyoungho: A Dynamic Instrumentation Amplifier for Low-Power and Low-Noise Biopotential Acquisition. Sensors, Vol. 16, no. 3, 2016, pp. 354 – 364. DOI 10.3390/s16030354

  150. Karlsson Magnus: Transmission Systems with Low Noise Phase-Sensitive Parametric Amplifiers. J. of Lightwave Technology, Vol. 34, no. 5, 2016, pp. 1411 – 1423. DOI 10.1109/JLT.2015.2507866

  151. Ng Kian Ann, Xu Yong Ping: A Low-Power, High CMRR Neural Amplifier System Employing CMOS Inverter-Based OTAs with CMFB Through Supply Rails. IEEE Journal of Solid State Circ., Vol. 51, no. 3, 2016, pp. 724 – 737. DOI 10.1109/JSSC.2015.2512935

  152. Naderi Nader A., Dajani Iyad, Flores Angel: High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth. Optics Lett., Vol. 41, no. 5, 2016, pp. 1018 – 1021. DOI 10.1364/OL.41.001018

  153. Tracy L.A., Luhman D.R., Carr S.M., et al.: Single shot spin readout using a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures. Applied Physics Lett., Vol. 108, no. 6, 2016, Article # 063101. DOI 10.1063/1.4941421

  154. Hsiao Yu-Chih, Meng Chinchun, Yang Chun: Design Optimization of Single-/Dual-Band FET LNAs Using Noise Transformation Matrix. IEEE Trans on MTT, Vol. 64, no. 2, 2016, pp. 519 – 532. DOI 10.1109/TMTT.2015.2508790

  155. English Erik, Weltz Adam, Dahal Rajendra, et al.: Low-Noise Preamplifier Design Considerations for Large Area High Capacitance Solid-State Neutron Detectors. IEEE Trans on Nuclear Science, Vol. 63, no. 1, 2016, Part: 2, pp. 304 – 315. DOI 10.1109/TNS.2016.2516008

  156. Liu Che-Hung, Chen Qi, Liu Chang-Hua, et al.: Graphene Ambipolar Nanoelectronics for High Noise Rejection Amplification. NANO Lett., Vol. 16, no. 2, 2016, pp. 1064 – 1068. DOI 10.1021/acs.nanolett.5b04203

  157. Mahran O.: Gain and noise figure enhancement of Er+3/Yb+3 co-doped fiber/Raman hybrid amplifier. Optical Materials, Vol. 52, 2016, pp. 100 – 106. DOI 10.1016/j.optmat.2015.12.018

  158. Varonen Mikko, Reeves Rodrigo, Kangaslahti Pekka, et al.: An MMIC Low-Noise Amplifier Design Technique. IEEE Trans on MTT, Vol. 64, no. 3, 2016, pp. 826 – 835. DOI 10.1109/TMTT.2016.2521650

  159. Chen Shin-Hao, Lin Kuei-Liang, Ng Shao Siang, et al.: Embedded Single-Inductor Bipolar-Output DC-DC Converter in Class-D Amplifier for Low Common Noise. IEEE Trans on Power Electronics, Vol. 31, no. 4, 2016, pp. 3106 – 3117. DOI 10.1109/TPEL.2015.2446510

  160. Gunes F., Demirel S., Mahouti P.: A simple and efficient honey bee mating optimization approach to performance characterization of a microwave transistor for the maximum power delivery and required noise. Int. J. of Numerical Modelling - Electronic Networks Devices & Fields, Vol. 29, no. 1, 2016, pp. 4 – 20. DOI 10.1002/jnm.2041

  161. Akbari M., Shokouhifar M., Hashemipour O., Jalali A., Hassanzadeh A.: Systematic design of analog integrated circuits using ant colony algorithm based on noise optimization. Analog Integrated Circuits & Signal Processing, Vol. 86, no. 2, 2016, pp. 327 – 339. DOI 10.1007/s10470-015-0682-0

  162. Liang Jianwu, Zhou Jian, Shi Jinjing, He Guangqiang, Guo Ying: Improving Continuous-Variable Quantum Key Distribution Using the Heralded Noiseless Linear Amplifier with Source in the Middle. Int. J. of Theoretical Physics, Vol. 55, no. 2, 2016, pp. 1156 – 1166. DOI 10.1007/s10773-015-2757-1

  163. Axelsson O., Billstrom N., Rorsman N., Thorsell M.: Impact of Trapping Effects on the Recovery Time of GaN Based Low Noise Amplifiers. IEEE Microwave & Wireless Comp. Lett., Vol. 26, no. 1, 2016, pp. 31 – 33. DOI 10.1109/LMWC.2015.2505641

  164. Boerzsoenyi A., Nagymihaly R.S., Osva K.: Drift and noise of the carrier-envelope phase in a Ti:sapphire amplifier. Laser Physics Lett., Vol. 13, no. 1, 2016, Article # 015301. DOI 10.1088/1612-2011/13/1/015301

  165. Karimlou A., Jafarnejad R., Sobhi J.: An Inductor-less Sub-mW Low Noise Amplifier for Wireless Sensor Network Applications. Integration - the VLSI Journal, Vol. 52, 2016, pp. 316 – 322. DOI 10.1016/j.vlsi.2015.07.009

  166. Lioliou G., Barnett A.M.: Electronic noise in charge sensitive preamplifiers for X-ray spectroscopy and the benefits of a SiC input JFET. Nuclear Instruments & Methods in Physics Research: Section A - Accelerators Spectrometers Detectors & Associated Equipment, Vol. 801, 2015, pp. 63 – 72. DOI 10.1016/j.nima.2015.08.042

  167. Worapishet A., Demosthenous A.: Generalized Analysis of Random Common-Mode Rejection Performance of CMOS Current Feedback Instrumentation Amplifiers. IEEE Trans on CAS I : Regular Papers, Vol. 62, no. 9, 2015, pp. 2137 – 2146. DOI 10.1109/TCSI.2015.2411794

  168. Haiyang Zhu, Kapusta R., Yong-Bin Kim: Noise Reduction Technique Through Bandwidth Switching for Switched-Capacitor Amplifier. IEEE Trans on CAS I : Regular Papers, Vol. 62, no. 7, 2015, pp. 1707 – 1715. DOI 10.1109/TCSI.2015.2446540

  169. Mazzucato S., Carrère H., Marie X., Amand T., Achouche M., Caillaud C., Brenot R.: Gain, amplified spontaneous emission and noise figure of bulk InGaAs/InGaAsP/InP semiconductor optical amplifiers. IET Optoelectronics, Vol. 9, no. 2, 2015, pp. 52 – 60. DOI 10.1049/iet-opt.2014.0064

  170. Kochetov B.A., Fedorov A.: Higher-order nonlinear effects in a Josephson parametric amplifier. Physical Review B, Vol. 92, no. 22, 2015, Article # 224304. DOI 10.1103/PhysRevB.92.224304

  171. Macklin C., O'Brien K., Hover D., et al.: A near-quantum-limited Josephson traveling-wave parametric amplifier. Science, Vol. 350, no. 6258, 2015, pp. 307 – 310. DOI 10.1126/science.aaa8525

  172. Zhong Ying-Hui, Li Kai-Kai, Li Xin-Jian, Jin Zhi: A W-band high-gain and low-noise amplifier MMIC using InP-based HEMTs. Journal of Infrared and Millimeter Waves, Vol. 34, no. 6, 2015, pp. 668 – 672. DOI 10.11972/j.issn.1001-9014.2015.06.006

  173. Yang F., Wang Z.X., Meng H.F., Dou W.B.: 1/f-Noise Analysis in Passive Millimeter Wave Imaging Front End Using Zero Biased Detector. Journal of Infrared Millimeter and Terahertz Waves, Vol. 36, no. 12, 2015, pp. 1176 – 1181. DOI 10.1007/s10762-015-0214-0

  174. Ma Ming-jun, Jin Zhong-he, Liu Yi-dong, Ma Tie-ying: Noise behaviors of a closed-loop micro-electromechanical system capacitive accelerometer. Journal of Central South University, Vol. 22, no. 12, 2015, pp. 4634 – 4644. DOI 10.1007/s11771-015-3014-8

  175. Mrad R., Pillonnet G., Morel F., Vollaire C., Nagari A.: Predicting the Impact of Magnetic Components Used for EMI Suppression on the Base-Band of a Power Amplifier. IEEE Trans on Power Electronics, Vol. 30, no. 8, 2015, pp. 4199 – 4208. DOI 10.1109/TPEL.2014.2351421

  176. Kim Jooseung, Kim Dongsu, Cho Yunsung, et al.: Analysis of Far-Out Spurious Noise and its Reduction in Envelope-Tracking Power Amplifier. IEEE Trans on MTT, Vol. 63, no. 12, Part 1, 2015, pp. 4072 – 4082. DOI 10.1109/TMTT.2015.2495178

  177. Lee Juri, Park Hyung Gu, Kim In Seong, et al.: A 6 Gb/s Low Power Transimpedance Amplifier with Inductor Peaking and Gain Control for 4-channel Passive Optical Network in 0.13 mu m CMOS. Journal of Semiconductor Technology and Science, Vol. 15, no. 1, 2015, pp. 122 – 130. DOI 10.5573/JSTS.2015.15.1.122

  178. Mitrofanov V.P, Chao Shiuh, Pan Huang-Wei, et al.: Technology for the next gravitational wave detectors. Science China-Physics Mechanics & Astronomy, Vol. 58, no. 12, 2015, Article # 120404. DOI 10.1007/s11433-015-5738-8

  179. Franson J.D., Kirby B.T.: Origin of quantum noise and decoherence in distributed amplifiers. Physical Review A, Vol. 92, no. 5, 2015, Article # 053825. DOI 10.1103/PhysRevA.92.053825

  180. Zhou Minchuan, Zhou Zifan, Shahriar Selim M.: Quantum noise limits in white-light-cavity-enhanced gravitational wave detectors. Physical Review D, Vol. 92, no. 8, 2015, Article # 082002. DOI 10.1103/PhysRevD.92.082002

  181. Hamerly R., Mabuchi H.: Quantum noise of free-carrier dispersion in semiconductor optical cavities. Physical Review A, Vol. 92, no. 2, 2015, Article # 023819. DOI 10.1103/PhysRevA.92.023819

  182. Niu Guofu, Ma Rongchen, Luo Lan, Cressler J.D.: Wide temperature range SiGe HBT noise parameter modeling and LNA design for extreme environment Electronics. Int. J. of Numerical Modelling - Electronic Networks Devices & Fields, Vol. 28, no. 6, SI, 2015, pp. 675 – 683. DOI 10.1002/jnm.2055

  183. Duong Quoc-Tai, Qazi F., Dabrowski J.J.: Analysis and design of low noise transconductance amplifier for selective receiver front-end. Analog Integrated Circuits & Signal Processing, Vol. 85, no. 2, SI, 2015, pp. 361 – 372. DOI 10.1007/s10470-015-0629-5

  184. Huang Chien-Chang, Guu G. Changlin: CMOS low noise amplifier designs for 5.8 GHz dedicated short-range communications applications. Microwave & Optical Techn. Lett., Vol. 57, no. 11, 2015, pp. 2524 – 2529. DOI 10.1002/mop.29368

  185. Song Ickhyun, Cho Moon-Kyu, Jung Seungwoo, et al.: Advantages of utilizing through-silicon-vias in SiGe HBT RF low-noise amplifier design. Microwave & Optical Techn. Lett., Vol. 57, no. 11, 2015, pp. 2703 – 2706. DOI 10.1002/mop.29412

  186. Shim Jaemin, Jeong Jichai: Design of a capacitor cross-coupled dual-band LNA with switched current-reuse technique. Int. J. of Electronics, Vol. 102, no. 10, 2015, pp. 1609 – 1620. DOI 10.1080/00207217.2014.984641

  187. Gazquez P., Jose A., Fernandez Ros M., Novas Castellano N., Garcia Salvador R.M.: Techniques for Schumann Resonance Measurements: A Comparison of Four Amplifiers With a Noise Floor Estimate. IEEE Trans on Instr. & Meas., Vol. 64, no. 10, 2015, pp. 2759 – 2768. DOI 10.1109/TIM.2015.2420376

  188. de la Broise X., Bounab A.: Cryogenic ultra-low noise HEMT amplifiers board. Nuclear Instruments & Methods in Physics Research: Section A - Accelerators Spectrometers Detectors & Associated Equipment, Vol. 787, 2015, pp. 51 – 54. DOI 10.1016/j.nima.2014.11.016

  189. Zannoni M.: Millimetric LNAs for astronomy: characterization at cryogenic temperature. Int. J. of Numerical Modelling - Electronic Networks Devices & Fields, Vol. 28, no. 6, SI, 2015, pp. 745 – 754. DOI 10.1002/jnm.2069

  190. Curry M.J., England T.D., Bishop N.C., et al.: Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor. Applied Physics Letters, Vol. 106, no. 20, 2015, Article # 203505. DOI 10.1063/1.4921308

  191. Crescentini M., Thei F., Bennati M., et al.: A Distributed Amplifier System for Bilayer Lipid Membrane (BLM) Arrays With Noise and Individual Offset Cancellation. IEEE Trans. on Biomedical Circuits and Systems, Vol. 9, no. 3, 2015, pp. 334 – 344. DOI 10.1109/TBCAS.2014.2346402

  192. Harrison R.R., Kolb I., Kodandaramaiah S.B., et al.: Microchip amplifier for in vitro, in vivo, and automated whole cell patch-klamp recording. Journal of Neurophysiology, Vol. 113, no. 4, 2015, pp. 1275 – 1282. DOI 10.1152/jn.00629.2014

  193. Ngounou G.M., Kom M.: Optimization of Noise in Non-integrated Instrumentation Amplifier for the Amplification of Very Low Electrophysiological Signals. Case of Electro Cardio Graphic Signals (ECG) (Vol. 38, 152, 2014). Journal of Medical Systems, Vol. 39, no. 2, 2015, Article # 3. DOI 10.1007/s10916-015-0190-x

  194. Hsu Chung-Lun, Jiang Haowei, Venkatesh A.G., Hall D.A.: A Hybrid Semi-Digital Transimpedance Amplifier With Noise Cancellation Technique for Nanopore-Based DNA Sequencing. IEEE Trans. on Biomedical Circuits and Systems, Vol. 9, no. 5, 2015, pp. 652 – 661. DOI 10.1109/TBCAS.2015.2496232

  195. Ruiz-Amaya J., Rodriguez-Perez A., Delgado-Restituto M.: A Low Noise Amplifier for Neural Spike Recording Interfaces. Sensors, Vol. 15, no. 10, 2015, pp. 25313 – 25335. DOI 10.3390/s151025313

  196. Yang Tan, Holleman J.: An Ultralow-Power Low-Noise CMOS Biopotential Amplifier for Neural Recording. IEEE Trans on CAS II : Express Briefs, Vol. 62, no. 10, 2015, pp. 927 – 931. DOI 10.1109/TCSII.2015.2457811

  197. Li Yang-Guo, Haider M.R., Massoud Y.: A Low-Noise Biopotential Amplifier with an Optimized Noise Efficiency Factor. J. of Circuits, Systems & Computers, Vol. 24, no. 6, 2015, Article # 1550090. DOI 10.1142/S0218126615500905

  198. Chandrakumar H., Markovic D.: A Simple Area-Efficient Ripple-Rejection Technique for Chopped Biosignal Amplifiers. IEEE Trans on CAS II : Express Briefs, Vol. 62, no. 2, SI, 2015, pp. 189 – 193. DOI 10.1109/TCSII.2014.2387686

  199. Han Myungjin, Kim Boram, Chen Yi-An, et al.: Bulk Switching Instrumentation Amplifier for a High-Impedance Source in Neural Signal Recording. IEEE Trans on CAS II : Express Briefs, Vol. 62, no. 2, SI, 2015, pp. 194 – 198. DOI 10.1109/TCSII.2014.2368615

  200. Wang Tzu-Yun, Liu Li-Han, Peng Sheng-Yu: A Power-Efficient Highly Linear Reconfigurable Biopotential Sensing Amplifier Using Gate-Balanced Pseudoresistors. IEEE Trans on CAS II : Express Briefs, Vol. 62, no. 2, SI, 2015, pp. 199 – 203. DOI 10.1109/TCSII.2014.2387685

  201. Chuah Joon Huang, Holburn D.: Design of Low-Noise High-Gain CMOS Transimpedance Amplifier for Intelligent Sensing of Secondary Electrons. IEEE Sensors Journal, Vol. 15, no. 10, 2015, pp. 5997 – 6004. DOI 10.1109/JSEN.2015.2452934

  202. Namiki Ryo: Amplification uncertainty relation for probabilistic amplifiers. Physical Review A, Vol. 92, no. 3, 2015, Article # 032326. DOI 10.1103/PhysRevA.92.032326

  203. Dobes J., Michal J., Popp J., et al.: Precise Characterization and Multiobjective Optimization of Low Noise Amplifiers. RadioEngineering, Vol. 24, no. 3, 2015, pp. 670 – 680.

  204. Akiba Makoto: Theory and Measurement of Reset Noise Suppression in CTIA Readout Circuits. IEICE Trans on Electronics, Vol. E98C, no. 8, 2015, pp. 899 – 902. DOI 10.1587/transele.E98.C.899

  205. Park Hyun-Woo, Ham Sun-Jun, Lai Ngoc-Duy-Hien, Kim Nam-Yoon, Kim Chang-Woo, Yoon Sang-Woong: An Wideband GaN Low Noise Amplifier in a 3x3 mm2 Quad Flat Non-leaded Package. J. of Semiconductor Technology & Science, Vol. 15, no. 2, 2015, pp. 301 – 306. DOI 10.5573/JSTS.2015.15.2.301

  206. Rastegar H., Ryu Jee-Youl: A broadband Low Noise Amplifier with built-in linearizer in 0.13-mu m CMOS process. Microelectronics Journal, Vol. 46, no. 8, 2015, pp. 698 – 705. DOI 10.1016/j.mejo.2015.05.006

  207. Biroth M., Achenbach P., Downie E., Thomas A.: A low-noise and fast pre-amplifier and readout system for SiPMs. Nuclear Instruments & Methods in Physics Research: Section A - Accelerators Spectrometers Detectors & Associated Equipment, Vol. 787, 2015, pp. 185 – 188. DOI 10.1016/j.nima.2014.11.097

  208. Akita Ippei, Ishida Makoto: A current noise reduction technique in chopper instrumentation amplifier for high-impedance sensors. IEICE Electronics Express, Vol. 12, no. 11, 2015, Article # 20150374. DOI 10.1587/elex.12.20150374

  209. Zhao Xiaorong, Fan Honghui, Ye Feiyue, et al.: Design of a Two Stage Low Noise System in the Frequency Band 1.8-2.2GHz for Wireless System. Int. J. of Future Generation Communication and Networking, Vol. 8, no. 3, 2015, pp. 111 – 122. DOI 10.14257/ijfgcn.2015.8.3.11

  210. Belostotski L., Veidt B., Warnick K.F., Madanayake A.: Low-Noise Amplifier Design Considerations For Use in Antenna Arrays. IEEE Trans on Antennas & Propagation, Vol. 63, no. 6, 2015, pp. 2508 – 2520. DOI 10.1109/TAP.2015.2419668

  211. Parvizi M., Allidina K., El-Gamal M.N.: A Sub-mW, Ultra-Low-Voltage, Wideband Low-Noise Amplifier Design Technique. IEEE Trans on VLSI, Vol. 23, no. 6, 2015, pp. 1111 – 1122. DOI 10.1109/TVLSI.2014.2334642

  212. Drung D., Krause C.: Excess Current Noise in Amplifiers With Switched Input. IEEE Trans on Instr. & Meas., Vol. 64, no. 6, 2015, pp. 1455 – 1459. DOI 10.1109/TIM.2015.2398958

  213. Huang Dong, Qian Weiqiang, Khan Mehdi, Diao Shengxi, Lin Fujiang: 0.2-4.35 GHz highly linear CMOS balun-LNA with substrate noise optimization. Analog Integrated Circuits & Signal Processing, Vol. 83, no. 3, 2015, pp. 285 – 293. DOI 10.1007/s10470-015-0533-z

  214. Akbari M., Hashemipour O.: Design and analysis of folded cascode OTAs using Gm/Id methodology based on flicker noise reduction. Analog Integrated Circuits & Signal Processing, Vol. 83, no. 3, 2015, pp. 343 – 352. DOI 10.1007/s10470-015-0535-x

  215. Cifuentes A., Marin E.: Implementation of a field programmable gate array-based lock-in amplifier. Measurement, Vol. 69, 2015, pp. 31 – 41. DOI 10.1016/j.measurement.2015.02.037

  216. Trantanella C.J., Blount P.: Low Noise GaN Amplifiers with Inherent Overdrive Protection. Microwave J., Vol. 58, no. 5, 2015, pp. 78 – +.

  217. Nejdel A., Sjoland H., Tormanen M.: A Noise-Cancelling Receiver Front-End With Frequency Selective Input Matching. IEEE Journal of SSC, Vol. 50, no. 5, 2015, pp. 1137 – 1147. DOI 10.1109/JSSC.2015.2415471

  218. Hedayati H., Lau Wing-Fat Andy, Kim Namsoo, Aparin V., Entesari K.: A 1.8 dB NF Blocker-Filtering Noise-Canceling Wideband Receiver With Shared TIA in 40 nm CMOS. IEEE Journal of SSC, Vol. 50, no. 5, 2015, pp. 1148 – 1164. DOI 10.1109/JSSC.2015.2403324

  219. Liu Hang, Zhu Xi, Boon Chirn Chye, Yi Xiang, Kong Lingshan: A 71 dB 150 mu W Variable-Gain Amplifier in 0.18 mu m CMOS Technology. IEEE Microwave & Wireless Comp. Lett., Vol. 25, no. 5, 2015, pp. 334 – 336. DOI 10.1109/LMWC.2015.2410133

  220. Torres Costa A.L., Klimach H., Bampi S.: High linearity 24 dB gain wideband inductorless balun low-noise amplifier for IEEE 802.22 band. Analog Integrated Circuits & Signal Processing, Vol. 83, no. 2, 2015, pp. 187 – 194. DOI 10.1007/s10470-015-0531-1

  221. Reyaz S.B., Malmqvist R., Gustafsson A., Kaynak M.: SiGe BiCMOS high-gain and wideband differential intermediate frequency amplifier for W-band passive imaging single-chip receivers. IET Microwaves Antennas & Propagation, Vol. 9, no. 6, 2015, pp. 569 – 575. DOI 10.1049/iet-map.2014.0511

  222. Wu Jing, Jiang ZhengDong, Yi Kai, et al.: A Q-band CMOS LNA exploiting transformer feedback and noise-cancelling. Science China-Information Sciences, Vol. 58, no. 4, 2015, Article # 042404. DOI 10.1007/s11432-014-5249-7

  223. Elkholy A., Anand T., Choi Woo-Seok, et al.: A 3.7 mW Low-Noise Wide-Bandwidth 4.5 GHz Digital Fractional-N PLL Using Time Amplifier-Based TDC. IEEE Journal of SSC, Vol. 50, no. 4, SI, 2015, pp. 867 – 881. DOI 10.1109/JSSC.2014.2385753

  224. Umeki T., Kazama Takushi, Tadanaga Osamu, Enbutsu Koji, Asobe Masaki, Miyamoto Yutaka, Takenouchi Hirokazu: PDM Signal Amplification Using PPLN-Based Polarization-Independent Phase-Sensitive Amplifier. Journal of Lightwave Technology, Vol. 33, no. 7, 2015, pp. 1326 – 1332. DOI 10.1109/JLT.2014.2385867

  225. Crupi G., Caddemi A., Raffo A., et al.: GaN HEMT Noise Modeling Based on 50-W Noise Factor. Microwave & Optical Techn. Lett., Vol. 57, no. 4, 2015, pp. 937 – 942. DOI 10.1002/mop.28983

  226. Zhou Haijun, Wang Wenzhe, Chen Chaoyong, Zheng Yaohui: A Low-Noise, Large-Dynamic-Range-Enhanced Amplifier Based on JFET Buffering Input and JFET Bootstrap Structure. IEEE Sensors Journal, Vol. 15, no. 4, 2015, pp. 2101 – 2105. DOI 10.1109/JSEN.2014.2371893

  227. Bhattacharya R., Basu A., Koul S.K.: Systematic Determination of Limits on Noise Figure and Distortion in Power Constrained Capacitive Desensitized CMOS LNAs. IETE Journal of Research, Vol. 61, no. 2, 2015, pp. 192 – 198. DOI 10.1080/03772063.2014.999831

  228. Groner Samuel: Reducing Transformerless Microphone Preamplifier Noise at Low Gain Settings. J. of the Audio Engineering Society, Vol. 63, no. 3, 2015, pp. 184 – 190. DOI 10.17743/jaes.2015.0014

  229. Lin Yo-Sheng, Lee Jen-How: A low power and low noise 60-GHz CMOS receiver front-end with high conversion gain and excellent port-to-port isolation. Analog Integrated Circuits & Signal Processing, Vol. 83, no. 2, 2015, pp. 119 – 128. DOI 10.1007/s10470-015-0515-1

  230. Lin Yo-Sheng, Lee Chien-Yo: 9.99 mW 4.8 dB NF 57-81 GHz CMOS Low-Noise Amplifier for 60 GHz WPAN System and 77 GHz Automobile Radar System. Microwave & Optical Techn. Lett., Vol. 57, no. 3, 2015, pp. 594 – 600. DOI 10.1002/mop.28898

  231. Lin Yo-Sheng, Liu Run-Chi: A Low-power, High-Gain, and Low-Noise 5-6 GHz CMOS Low-Noise Amplifier with Excellent Reverse Isolation for IEEE 802.11 n/ac WLAN Applications. Microwave & Optical Techn. Lett., Vol. 57, no. 2, 2015, pp. 296 – 304. DOI 10.1002/mop.28834

  232. Murthy B.T. Venkatesh, Rao I. Srinivasa: Design of Narrow Band UHF Low Noise Amplifier for Wind Profilers. Microwave & Optical Techn. Lett., Vol. 57, no. 3, 2015, pp. 600 – 603. DOI 10.1002/mop.28909

  233. Donida A., Cellier R., Nagari A., Malcovati P., Baschirotto A.: A 40-nm CMOS, 1.1-V, 101-dB Dynamic-Range, 1.7-mW Continuous-Time Sigma Delta ADC for a Digital Closed-Loop Class-D Amplifier. IEEE Trans on CAS I : Regular Papers, Vol. 62, no. 3, 2015, pp. 645 – 653. DOI 10.1109/TCSI.2014.2373971

  234. Hu Zhengfei, Zhang Li, Huang Mindi: A 2.9 mm2 Highly Integrated Low Noise GPS Receiver in 0.18-mu m CMOS Technology. J. of Circuits, Systems & Computers, Vol. 24, no. 3, 2015, Article # 1550036. DOI 10.1142/S021812661550036X

  235. Shymanska Alla: Effect of high-efficiency emitter on noise characteristics of electron amplifiers. J. of Computational Electronics, Vol. 14, no. 1, SI, 2015, pp. 341-351. DOI 10.1007/s10825-015-0661-9

  236. Homayoun A., Razavi B.: A Low-Power CMOS Receiver for 5 GHz WLAN. IEEE Journal of SSC, Vol. 50, no. 3, 2015, pp. 630 – 643. DOI 10.1109/JSSC.2014.2386900

  237. Drung D., Krause C., Becker U., Scherer H., Ahlers F.J.: Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy. Review of Scientific Instruments, Vol. 86, no. 2, 2015, Article # 024703. DOI 10.1063/1.4907358

  238. Li Fanyang, Jiang Hao: A High-PSRR Low Dropout Regulator for LNB Using the First-Stage Reference-Included Coarse-Filtering Technique. J. of Circuits, Systems & Computers, Vol. 24, no. 2, SI, 2015, Article # 1550022. DOI 10.1142/S021812661550022X

  239. Xu Jianfei, Yan Na, Zeng Xiaoyang, Gao Jianjun, Yang Chen: A 3.4 dB NF K-band LNA with a Tapped Capacitor Matching Network in 65 nm CMOS Technology. Int. J. of RF and Microwave Computer-Aided Engineering, Vol. 25, no. 2, 2015, pp. 146 – 153. DOI 10.1002/mmce.20843

  240. Nikandish G., Medi A.: Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers. IEEE Trans on MTT, Vol. 63, no. 2, Part 1, 2015, pp. 441-448. DOI 10.1109/TMTT.2014.2383400

  241. Hoe David H.K., Jin Xiaoyu: The Design of Low Noise Amplifiers in Deep Submicron CMOS Processes: A Convex Optimization Approach. VLSI Design, 2015, Article # UNSP 312639. DOI 10.1155/2015/312639

  242. Beshr Arwa Hassan: Study of ASE noise power, noise figure and quantum conversion efficiency for wide-band EDFA. Optik, Vol. 126, no. 23, 2015, pp. 3492 – 3495. DOI 10.1016/j.ijleo.2015.08.225

  243. Crotti M., Rech I., Acconcia G., Gulinatti A., Ghioni M.: A 2-GHz Bandwidth, Integrated Transimpedance Amplifier for Single-Photon Timing Applications. IEEE Trans on VLSI, Vol. 23, no. 12, 2015, pp. 2819 – 2828. DOI 10.1109/TVLSI.2014.2382551

  244. Guo Xueshi, Liu Nannan, Li Xiaoying, Ou Z.Y.: Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation. Optics Express, Vol. 23, no. 23, 2015, pp. 29369 – 29383. DOI 10.1364/OE.23.029369

  245. Gershikov A., Eisenstein G., Stubenrauch M., Bimberg D.: Phase sensitive parametric fiber amplifier for the 2 mu m wavelength range. Optics Express, Vol. 23, no. 18, 2015, pp. 23952 – 23959. DOI 10.1364/OE.23.023952

  246. Jian Leong Chia, Rashid Hairul Azhar Abdul, Mokhtar Mohd Ridzuan: Effects of macro-bending on 1500-nm amplified spontaneous emission, gain, and noise figure of erbium-gallium co-doped fiber. Optical Engineering, Vol. 54, no. 12, 2015, Article # 126109. DOI 10.1117/1.OE.54.12.126109

  247. Yang Weili, Cao Tong, Yu Yu, et al.: Theoretical Analysis and Experimental Investigation of Degenerate Phase-Sensitive Amplification in a Semiconductor Optical Amplifier. Journal of Lightwave Technology, Vol. 33, no. 19, 2015, pp. 4001 – 4007. DOI 10.1109/JLT.2015.2461572

  248. El Nayal E.K., Fayed H.A., Abd El-Aziz A., Aly M.H.: Amplification and switching functions of SOA: impact of amplified spontaneous emission noise. Optoelectronics and Advanced Materials - Rapid Communications, Vol. 9, no. 9-10, 2015, pp. 1119 – 1125.

  249. Pakarzadeh H., Zakery A.: Investigation of two-pump fiber optical parametric amplifiers for a broadband and flat gain with a low pump-to-signal noise transfer. Journal of Nonlinear Optical Physics & Materials, Vol. 24, no. 3, 2015, Article # 1550038. DOI 10.1142/S0218863515500381

  250. Talarico C., Agrawal G., Wang-Roveda J., Lashgari H.: Design Optimization of a Transimpedance Amplifier for a Fiber Optic Receiver. Circuits Systems & Signal Processing, Vol. 34, no. 9, 2015, pp. 2785 – 2800. DOI 10.1007/s00034-015-0002-z

  251. Ali M.H., Abdullah F., Jamaludin M.Z., et al.: Effect of Cascading Amplification Stages on the Performance of Serial Hybrid Fiber Amplifier. Fiber and Integrated Optics, Vol. 34, no. 3, 2015, pp. 157 – 170. DOI 10.1080/01468030.2015.1061621

  252. Chang M.P., Lee Chia-Lo, Wu Ben, Prucnal P.R.: Adaptive Optical Self-Interference Cancellation Using a Semiconductor Optical Amplifier. IEEE Photonics Technology Lett., Vol. 27, no. 9, 2015, pp. 1018 – 1021. DOI 10.1109/LPT.2015.2405498

  253. Dweiri Y.M., Eggers T., McCallum G., Durand D.M.: Ultra-low noise miniaturized neural amplifier with hardware averaging. Journal of Neural Engineering, Vol. 12, no. 4, 2015, Article # 046024. DOI 10.1088/1741-2560/12/4/046024

  254. Felinskyi G., Dyriv M.: Noise Suppression Phenomenon in Fiber Raman Amplifier. Measurement Science Review, Vol. 15, no. 3, 2015, pp. 107 – 110. DOI 10.1515/msr-2015-0016

  255. Choudhury Pallab K.: Improved noise tolerance and spectral efficiency in RSOA based WDM-PON by using Miller signal. Optical and Quantum Electronics, Vol. 47, no. 3, 2015, pp. 595 – 602. DOI 10.1007/s11082-014-9935-x

  256. Wunram M., Storz P., Brida D., Leitenstorfer A.: Ultrastable fiber amplifier delivering 145-fs pulses with 6-mu J energy at 10-MHz repetition rate. Optics Lett., Vol. 40, no. 5, 2015, pp. 823 – 826. DOI 10.1364/OL.40.000823

  257. Baghban H, Alimohammadi F: Noise Suppression in Quantum-Dot Semiconductor Optical Amplifiers: A Bit Rate-SNR Analysis. IEEE Trans on ED, Vol. 62, no. 3, 2015, pp. 909 – 913. DOI 10.1109/TED.2015.2395960

  258. Jain S., Thipparapu N.K., Barua P., Sahu Jayanta Kumar: Cladding-Pumped Er/Yb-Doped Multi-Element Fiber Amplifier for Wideband Applications. IEEE Photonics Technology Lett., Vol. 27, no. 4, 2015, pp. 356 – 358. DOI 10.1109/LPT.2014.2374234

  259. Fang Yami, Jing Jietai: Quantum squeezing and entanglement from a two-mode phase-sensitive amplifier via four-wave mixing in rubidium vapor. New Journal of Physics, Vol. 17, 2015, Article # 023027. DOI 10.1088/1367-2630/17/2/023027

  260. Chen Mingchen, Shirakawa Akira, Olausson C.B., Alkeskjold T.T.: 87 W, narrow-linewidth, linearly-polarized 1178 nm photonic bandgap fiber amplifier. Optics Express, Vol. 23, no. 3, 2015, pp. 3134 – 3141. DOI 10.1364/OE.23.003134

  261. Drung Dietmar, Krause Christian: Excess Current Noise in Amplifiers with Switched Input. IEEE Trans on Instr. & Meas., Vol. 64, no. 6, 2015, pp. 1455 – 1459. DOI 10.1109/TIM.2015.2398958

  262. Pasian Marco, Chambon Cedric, Bozzi Maurizio, et al.: Cryogenic dual-temperature low noise amplifier in K band. IET Microwaves Antennas & Propagation, Vol. 8, no. 9, 2014, pp. 642 – 648. DOI 10.1049/iet-map.2013.0523

  263. Higuchi Kazuki, Takeuchi Nobuhito, Yamada Minoru: Peculiar Characteristics of Amplification and Noise for Intensity Modulated Light in Semiconductor Optical Amplifier. IEICE Trans on Electronics, Vol. E97C, no. 11, 2014, pp. 1093 – 1103. DOI 10.1587/transele.E97.C.1093

  264. Mahrof D.H., Klumperink E.A.M., Ru Z., Oude Alink M., Nauta B.: Cancelation of OpAmp virtual ground imperfections by a negative conductance applied to improve RF receiver linearity. IEEE J. Solid-State Circuits, Vol. 49, no. 5, 2014, pp. 1112 – 1124. DOI 10.1109/JSSC.2013.2294637

  265. Lockerbie N.A., Tokmakov K.V.: A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in advanced Laser Interferometer Gravitational wave Observatory suspensions. Review of Scientific Instruments, Vol. 85, no. 11, 2014, Article # 114705. DOI 10.1063/1.4900955

  266. Gawande R., Bradley R., Langston G.: Low noise, 0.4-3 GHz cryogenic receiver for radio astronomy. Review of Scientific Instruments, Vol. 85, no. 10, 2014, Article # 104710. DOI 10.1063/1.4900446

  267. Cochems P., Kirk A., Zimmermann S.: In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers. Review of Scientific Instruments, Vol. 85, no. 12, 2014, Article # 124703. DOI 10.1063/1.4902854

  268. Zhou Liang, Zhang Shuo, Yin Wen-Yan, Mao Jun-Fa: Immunity Analysis and Experimental Investigation of a Low-Noise Amplifier Using a Transient Voltage Suppressor Diode Under Direct Current Injection of HPM Pulses. IEEE Trans on EMC, Vol. 56, no. 6, 2014, pp. 1715 – 1718. DOI 10.1109/TEMC.2014.2332182

  269. Song Ickhyun, Jung Seungwoo, Lourenco N.E., et al.: Design of Radiation-Hardened RF Low-Noise Amplifiers Using Inverse-Mode SiGe HBTs. IEEE Trans on Nuclear Science, Vol. 61, no. 6, Part 1, 2014, pp. 3218 – 3225. DOI 10.1109/TNS.2014.2363631

  270. Bastos I., Oliveira L.B., Goes J., Silva M.: A low power balun LNA with active loads for gain and noise figure optimization. Analog Integrated Circuits & Signal Processing, Vol. 81, no. 3, SI, 2014, pp. 693 – 702. DOI 10.1007/s10470-014-0426-6

  271. Nouri M., Karimi G.: A Novel 2.5-3.1 GHz Wide-Band Low-Noise Amplifier in 0.18 CMOS. Wireless Personal Communications, Vol. 79, no. 3, 2014, pp. 1993 – 2003. DOI 10.1007/s11277-014-1969-7

  272. Hsu Meng-Ting, Lin Yu-Hsien, Jing-Cheng Yang: Low power high gain CMOS LNA based on inverter cell and self-body bias for UWB receivers. Microelectronics Journal, Vol. 45, no. 11, 2014, pp. 1463 – 1469. DOI 10.1016/j.mejo.2014.05.010

  273. Grossman E.N., Leong Kevin, Mei Xiaobing, Deal W.: Low-Frequency Noise and Passive Imaging With 670 GHz HEMT Low-Noise Amplifiers. IEEE Trans on Terahertz Science and Technology, Vol. 4, no. 6, 2014, pp. 749 – 752. DOI 10.1109/TTHZ.2014.2352035

  274. Li Xiaolong, Tian Yubo, Xie Zhibin, et al.: Noise current feedforward for noise cancellation in the wideband transformer shunt feedback low noise amplifier. J. of Communications Technology and Electronics, Vol. 59, no. 11, 2014, pp. 1298 – 1302. DOI 10.1134/S1064226914110254

  275. Klumperink E.A.M., Nauta B.: Software Defined Radio Receivers Exploiting Noise Cancelling: A Tutorial Review. IEEE Communications Magazine, Vol. 52, no. 10, 2014, pp. 111 – 117. DOI 10.1109/MCOM.2014.6917411

  276. Maram R., Van Howe J., Li Ming, et al.: Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect. Nature Communications, Vol. 5, 2014, Article # 5163. DOI 10.1038/ncomms6163

  277. Angelone M., Cardarelli R., Paolozzi L., Pillon M.: Development of a low-noise amplifier for neutron detection in harsh environment. European Physical Journal Plus, Vol. 129, no. 10, 2014, Article # 205. DOI 10.1140/epjp/i2014-14205-1

  278. Cen Mingcan, Song Shuxiang: A High Gain, Low-Power Low-Noise Amplifier for Ultra-Wideband Wireless Systems. Circuits Systems & Signal Processing, Vol. 33, no. 10, 2014, pp. 3251 – 3262. DOI 10.1007/s00034-014-9801-x

  279. Dai Ruofan, Zheng Yunlong, Zhu Hongwei, et al.: A High Gain and High Linearity Current-Reused CMOS LNA Using Modified Derivative Superposition Technique with Bulk-Bias Control. Microwave & Optical Techn. Lett., Vol. 56, no. 10, 2014, pp. 2444 – 2446. DOI 10.1002/mop.28608

  280. Hu Boyu, Yu Xiao Peng, Lim Wei Meng, et al.: Analysis and Design of Ultra-Wideband Low-Noise Amplifier With Input/Output Bandwidth Optimization and Single-Ended/Differential-Input Reconfigurability. IEEE Trans on Industrial Electronics, Vol. 61, no. 10, 2014, pp. 5672 – 5680. DOI 10.1109/TIE.2013.2297434

  281. Tzu-Yun Wang, Min-Rui Lai, Twigg C.M., Sheng-Yu Peng: A Fully Reconfigurable Low-Noise Biopotential Sensing Amplifier With 1.96 Noise Efficiency Factor. IEEE Trans. on Biomedical Circuits and Systems, Vol. 8, no. 3, 2014, pp. 411 – 422. DOI 10.1109/TBCAS.2013.2278659

  282. Duarte M.J., Cabral P.M., Pedro J.C.: Switching Noise Improvement of a Limit-Cycle Amplifier Using a Negative Hysteresis Relay. IEEE Trans on Power Electronics, Vol. 29, no. 6, 2014, pp. 3223 – 3231. DOI 10.1109/TPEL.2013.2272763

  283. Karasz Z., Fiath R., Foldesy P., Rodriguez Vazquez A.: Tunable Low Noise Amplifier Implementation With Low Distortion Pseudo-Resistance for in Vivo Brain Activity Measurement. IEEE Sensors Journal, Vol. 14, no. 5, 2014, pp. 1357 – 1363. DOI 10.1109/JSEN.2013.2294971

  284. Xicheng Jiang, Jungwoo Song, Cheung D., Minsheng Wang, Arunachalam S.K.: Integrated Class-D Audio Amplifier With 95% Efficiency and 105 dB SNR. IEEE Journal of SSC, Vol. 49, no. 11, 2014, pp. 2387 – 2396. DOI 10.1109/JSSC.2014.2335713

  285. Kapusta R., Haiyang Zhu, Lyden C.: Sampling Circuits That Break the kT/C Thermal Noise Limit. IEEE Journal of SSC, Vol. 49, no. 8, 2014, pp. 1694 – 1701. DOI 10.1109/JSSC.2014.2320465

  286. Jingjing Yu, Amer A., Sanchez-Sinencio E.: Electromagnetic Interference Resisting Operational Amplifier. IEEE Trans on CAS I : Regular Papers, Vol. 61, no. 7, 2014, pp. 1917 – 1927. DOI 10.1109/TCSI.2014.2298277

  287. Colli-Menchi A.I., Torres J., Sanchez-Sinencio E.: A Feed-Forward Power-Supply Noise Cancellation Technique for Single-Ended Class-D Audio Amplifiers. IEEE Journal of SSC, Vol. 49, no. 3, 2014, pp. 718 – 728. DOI 10.1109/JSSC.2014.2298456

  288. Yu-Hsun Chien, Kuan-Lin Fu, Shen-Iuan Liu: A 3–25 Gb/s Four-Channel Receiver With Noise-Canceling TIA and Power-Scalable LA. IEEE Trans on CAS II : Express Briefs, Vol. 61, no. 11, 2014, pp. 845 – 849. DOI 10.1109/TCSII.2014.2350372

  289. Ou J., Ferreira P.M.: A gm/ID-Based Noise Optimization for CMOS Folded-Cascode Operational Amplifier. IEEE Trans on CAS II : Express Briefs, Vol. 61, no. 10, 2014, pp. 783 – 787. DOI 10.1109/TCSII.2014.2345297

  290. Blaaberg Soren, Mork Jesper: Noise Spectrum of a Semiconductor Optical Amplifier Excited by a Modulated Signal. IEEE Journal of Quantum Electronics, Vol. 50, no. 4, 2014, pp. 243 – 254. DOI 10.1109/JQE.2014.2306653

  291. Ivanov E.N., Parker S.R., Bara-Maillet R., Tobar M.E.: Noise Properties of Cryogenic Microwave Amplifiers and Relevance to Oscillator Frequency Stabilization. IEEE Trans on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 61, no. 4, 2014, pp. 575 – 581. DOI 10.1109/TUFFC.2014.2946

  292. Gunes Filiz, Demirel Salih, Mahouti Peyman: Design of a Front-End Amplifier for the Maximum Power Delivery and Required Noise by HBMO with Support Vector Microstrip Model. RadioEngineering, Vol. 23, no. 1, 2014, Special no. SI, Part 1, pp. 134 – 143.

  293. Korolev A.M., Shulga V.M., Tarapov S.I.: Extra-low power consumption amplifier based on HEMT in unsaturated mode for use at subkelvin ambient temperatures. Cryogenics, Vol. 60, 2014, pp. 76 – 79. DOI 10.1016/j.cryogenics.2014.01.012

  294. Borgarino M., Beneventi G.B., Doga V., Pavan P.: On the limitations of transimpedance amplifiers as tools for low-frequency noise characterization. Microelectronics J., Vol. 45, no. 2, 2014, pp. 152 – 158. DOI 10.1016/j.mejo.2013.12.007

  295. Serrano-Finetti E., Pallas-Areny R.: Noise Reduction in AC-Coupled Amplifiers. IEEE Trans on Instr. & Meas., Vol. 63, no. 7, 2014, pp. 1834 – 1841. DOI 10.1109/TIM.2014.2299525

  296. Rashtian Hooman, Mirabbasi Shahriar: Design and Layout Techniques for a mm-Wave Body-Biased Variable-Gain Amplifier. Int. J. of RF and Microwave Computer-Aided Engineering, Vol. 24, no. 4, 2014, pp. 470 – 477. DOI 10.1002/mmce.20788

  297. Lamb James W.: Evaluation of biasing and protection circuitry components for cryogenic MMIC low-noise amplifiers. Cryogenics, Vol. 61, 2014, pp. 43 – 54. DOI 10.1016/j.cryogenics.2014.02.005

  298. Derafshi Zahra H., Frounchi J.: Low-noise low-power front-end logarithmic amplifier for neural recording system. Int. J. of Circuit Theory and Applications, Vol. 42, no. 5, 2014, pp. 437 – 451. DOI 10.1002/cta.1861

  299. Marazzi L., Boletti A., Parolari P., Gatto A., Brenot R., Martinelli M.: Relative intensity noise suppression in reflective SOAs. Optics Communications, Vol. 318, 2014, pp. 186 – 188. DOI 10.1016/j.optcom.2013.12.057

  300. Ng K.A., Yong Ping Xu: A Compact, Low Input Capacitance Neural Recording Amplifier. IEEE Trans. on Biomedical Circuits and Systems, Vol. 7, no. 5, 2013, pp. 610 – 620. DOI 10.1109/TBCAS.2013.2280066

  301. D.M.P. Smith, B.E.M. Woestenburg: Technique for reduction of noise resistance in a balanced low-noise amplifier for beam-steering applications. Int. Journal of Microwave and Wireless Technologies, Vol. 5, no. 5, 2013, pp 561 – 565. DOI http://dx.doi.org/10.1017/S1759078713000676

  302. Bierwirth M.: Using Single Transients on the Performance Analysis of Electrochemical Noise Amplifiers. Materials & Corrosion - Werkstoffe & Korrosion, Vol. 64, no. 8, 2013, pp. 664 – 670. DOI 10.1002/maco.201206735

  303. Seth S., Murmann B.: Settling Time and Noise Optimization of a Three-Stage Operational Transconductance Amplifier. IEEE Trans on CAS I: Regular Papers, Vol. 60, no. 5, 2013, pp 1168 – 1174. DOI 10.1109/TCSI.2013.2244325

  304. Ragab K., Kozak M., Nan Sun: Thermal Noise Analysis of a Programmable-Gain Switched-Capacitor Amplifier With Input Offset Cancellation. IEEE Trans on CAS II: Express Briefs, Vol. 60, no. 3, 2013, pp 147 – 151. DOI 10.1109/TCSII.2013.2240831

  305. Georgescu B., Salmeh R., Fattouche M., Ghannouchi F.: Two-Tone Phase Delay Control of Center Frequency and Bandwidth in Low-Noise-Amplifier RF Front Ends. IEEE Trans on CAS II: Express Briefs, Vol. 60, no. 4, 2013, pp 192 – 196. DOI 10.1109/TCSII.2013.2251948

  306. Jiang X., Song J., Wang M., Chen J., Arunachalam S.K.: Integrated Pop-Click Noise Suppression, EMI Reduction, and Short-Circuit Detection for Class-D Audio Amplifiers. IEEE Journal of SSC, Vol. 48, no. 4, 2013, pp 1099 – 1108. DOI 10.1109/JSSC.2013.2238999

  307. Jiawei Xu, Qinwen Fan, Huijsing, J.H., Van Hoof, C., Yazicioglu, R.F., Makinwa, K.A.A.: Measurement and Analysis of Current Noise in Chopper Amplifiers. IEEE Journal of SSC, Vol. 48, no. 7, 2013, pp 1575 – 1584. DOI 10.1109/JSSC.2013.2253217

  308. Demirel S., Gunes F.: Performance characterisation of a microwave transistor for the maximum output power and the required noise. IET Circuits, Devices & Systems, Vol. 7, no. 1, 2013, pp 9 – 20 DOI 10.1049/iet-cds.2012.0119

  309. Richelli A.: EMI susceptibility of DTMOS opamps. Electronics Lett., Vol. 49, no. 2, 2013, pp 98 – 99. DOI 10.1049/el.2012.3941

  310. Rhouni A., Sou G., Leroy P., Coillot C.: Very Low 1/f Noise and Radiation-Hardened CMOS Preamplifier for High-Sensitivity Search Coil Magnetometers. IEEE Sensors Journal, Vol. 13, no.1, 2013, pp.159 – 166. DOI 10.1109/JSEN.2012.2211347

  311. Pakarzadeh H., Zakery A.: Modelling of noise suppression in gain-saturated fiber optical parametric amplifiers. Optics Communications, Vol. 309, 2013, pp. 30 – 36. DOI 10.1016/j.optcom.2013.06.038

  312. Arakawa Tomonori, Nishihara Yoshitaka, Maeda Masahiro, Norimoto Shota, Kobayashi Kensuke: Cryogenic amplifier for shot noise measurement at 20 mK. Applied Physics Letters, Vol. 103, no. 17, 2013, Article # 172104. DOI http://dx.doi.org/10.1063/1.4826681

  313. Kong Jia, Hudelist F., Ou Z. Y., Zhang Weiping: Cancellation of Internal Quantum Noise of an Amplifier by Quantum Correlation. Physical Review Lett., Vol. 111, no. 3, 2013, Article # 033608. DOI 10.1103/PhysRevLett.111.033608

  314. Carney K., Lennox R., Maldonado-Basilio R., Philippe S., Surre F., Bradley L., Landais P.: Method to improve the noise figure and saturation power in multi-contact semiconductor optical amplifiers: simulation and experiment. Optics Express, Vol. 21, no. 6, 2013, pp. 7180 – 7195. DOI 10.1364/OE.21.007180

  315. Schleeh J., Wadefalk N., Nilsson Per-Ake, Starski J. P., Grahn J.: Cryogenic Broadband Ultra-Low-Noise MMIC LNAs for Radio Astronomy Applications. IEEE Trans on MTT, Vol. 61, no. 2, 2013, pp. 871 – 877. DOI 10.1109/TMTT.2012.2235856

  316. Thei F., Rossi M., Bennati M., Crescentini M., Berti C., Tartagni M.: A Low Noise Ion Channel Amplifier in a USB Pen Drive. Biophysical Journal, Vol. 104, no. 2, Supplement: 1, 2013, pp. 519A – 519A.

  317. Green J.E., David J.P.R., Tozer R.C.: A Transimpedance Amplifier for Excess Noise Measurements of High Junction Capacitance Avalanche Photodiodes. Measurement Science & Technology, Vol. 23, no. 12, 2012, Article # 125901. DOI 10.1088/0957-0233/23/12/125901

  318. J. Schleeh, G. Alestig, J. Halonen, A. Malmros, B. Nilsson, P.A. Nilsson, J. Starski, N. Wadefalk, H. Zirath, J. Grahn: Ultralow-Power Cryogenic InP HEMT with Minimum Noise Temperature of 1 K at 6 GHz. IEEE ED Lett., Vol. 33, no. 5, 2012, pp. 664 – 666. DOI 10.1109/LED.2012.2187422

  319. Nakamura T., Kurihara Y., Watanabe K., Terada M.: Design of a Preamplifier for Capacitive Sensors With Wide Low-Frequency Range and Low Drift Noise. IEEE Sensors Journal, Vol. 12, no. 2, 2012, pp. 378 – 383. DOI 10.1109/JSEN.2011.2161282

  320. Levinzon F.A.: Ultra-Low-Noise Seismic Piezoelectric Accelerometer With Integral FET Amplifier. IEEE Sensors Journal, Vol. 12, no. 6, 2012, pp. 2262 – 2268. DOI 10.1109/JSEN.2012.2186564

  321. Kooi J.W., Chamberlin R.A., Monje R., Force B., Miller D., Phillips T.G.: Balanced Receiver Technology Development for the Caltech Submillimeter Observatory. IEEE Trans on Terahertz Science and Technology, Vol. 2, no. 1, 2012, pp. 71 – 82. DOI 10.1109/TTHZ.2011.2177726

  322. Zhao Y., Ojefors E., Aufinger K., Meister T. F., Pfeiffer U. R.: A 160-GHz Subharmonic Transmitter and Receiver Chipset in an SiGe HBT Technology. IEEE Trans on MTT, Vol. 60, no. 10, 2012, pp. 3286 – 3299. DOI 10.1109/TMTT.2012.2209450

  323. Aja B., Seelmann-Eggebert M., Leuther A., Massler H., Schlechtweg M., Gallego J. D., Lopez-Fernandez I., Diez C., Malo I., Villa E., Artal E.: 4–12 GHz and 25–34 GHz cryogenic MHEMT MMIC Low Noise Amplifiers for radio astronomy. IEEE MTT-S Int. Microwave Symp. Digest (MTT), 2012, pp. 1 – 3. DOI 10.1109/MWSYM.2012.6259592

  324. Oupeng Li, Yuehang Xu, Yunchuan Guo, Lei Wang, Ruimin Xu, Bo Yan: 60 GHz GaAs MMIC low noise amplifier. Int. Conf on Microwave and Millimeter Wave Technology (ICMMT), Vol. 1, 2012, pp. 1 – 3. DOI 10.1109/ICMMT.2012.6229981

  325. Jeng-Han Tsai, Ji-Yang Lin, Kun-Yao Ding: Design of a 9–25 GHz broadband low noise amplifier using 0.15-μm GaAs HEMT process. Int. Conf on Microwave and Millimeter Wave Technology (ICMMT), Vol. 5, 2012, pp. 1 – 4. DOI 10.1109/ICMMT.2012.6230368

  326. Pospieszalski M.W.: Cryogenic amplifiers for Jansky Very Large Array receivers. Int. Conf on Microwave Radar and Wireless Communications (MIKON), Vol. 2, 2012, pp. 748 – 751. DOI 10.1109/MIKON.2012.6233589

  327. Eskanadri S., Hamedani F.T.: Design and progress of a wideband 120–210 GHz low noise amplifier. Int. Conf on Microwave Radar and Wireless Communications (MIKON), Vol. 2, 2012, pp. 757 – 760. DOI 10.1109/MIKON.2012.6233630

  328. Zech C., Diebold S., Wagner S., Schlechtweg M., Leuther A., Ambacher O., Kallfass I.: An ultra-broadband low-noise traveling-wave amplifier based on 50nm InGaAs mHEMT technology. German Microwave Conference (GeMiC), 2012, pp. 1 – 4. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6185178&isnumber=6185137

  329. Zeimpekis I., Sari I., Kraft M.: Characterization of a Mechanical Motion Amplifier Applied to a MEMS Accelerometer. Journal of Microelectromechanical Systems, Vol. 21, no. 5, 2012, pp. 1032 – 1042. DOI 10.1109/JMEMS.2012.2196491

  330. Bum-Kyum Kim, Donggu Im, Jaeyoung Choi, Kwyro Lee: A 1 GHz 1.3 dB NF +13 dBm output P1dB SOI CMOS low noise amplifier for SAW-less receivers. IEEE Radio Frequency Integrated Circuits Symp. (RFIC) 2012, pp. 9 – 12. DOI 10.1109/RFIC.2012.6242138

  331. Dehrizi H.G., Haddadnia J.: A great Ultra Wideband (3.1–10.6-GHz) LNA in 0.18-μm (CMOS) for UWB pulse-radio systems applications. Int. Multi-Conf on Systems, Signals and Devices (SSD), 2012, pp. 1 – 4. DOI 10.1109/SSD.2012.6198086

  332. Wei Cheng, Annema A.J., Wienk G.J.M., Nauta B.: A wideband IM3 cancellation technique using negative impedance for LNAs with cascode topology. IEEE Radio Frequency Integrated Circuits Symp. (RFIC), 2012, pp. 13 – 16. DOI 10.1109/RFIC.2012.6242221

  333. Pintelon R., Schoukens J.: The best linear approximation of nonlinear systems operating in feedback. IEEE Int. Instrumentation & Measurement Technology Conf (I2MTC), 2012, pp. 2092 – 2097. DOI 10.1109/I2MTC.2012.6229142

  334. Yu-na Su, Geng Li: Design of a Low Noise Amplifier of RF communication receiver for mine. IEEE Symp. on Electrical & Electronics Eng. (EEESYM), 2012, pp. 125 – 127. DOI 10.1109/EEESym.2012.6258604

  335. Pakarzadeh H.: Optimization of Two-Pump Fiber Optical Parametric Amplifiers for Broadband Flat Gain and Low Pump-to-Signal Noise Transfer. Symp. on Photonics and Optoelectronics (SOPO), 2012, pp. 1 – 4. DOI 10.1109/SOPO.2012.6270508

  336. Lee Shuenn-Yuh, Wang Liang-Hung, Chen Tsung-Yen, Yu Chih-Tao: A low-power RF front-end with merged LNA, differential power splitter, and quadrature mixer for IEEE 802.15.4 (ZigBee) applications. IEEE Int. Symp on Circuits and Systems (ISCAS), 2012, pp. 1492 – 1495. DOI 10.1109/ISCAS.2012.6271531

  337. Manikandan P., Areeckal A.S.: A Novel CMOS Low Noise Amplifier for UWB Application. Int. Conf. on Advanced Computing & Communication Technologies (ACCT), 2012, pp. 450 – 453. DOI 10.1109/ACCT.2012.8

  338. Matindoust S., Sadeghy Bajestani G., Akhlaghi I. A., Nabovati H., Vahedian M.: Improvement of ultra-wideband LNA parameters, multi-objective algorithm for flatness over bandwidth less 3dB. Iranian Conf. on Electrical Engineering (ICEE), 2012, pp. 154 – 159. DOI 10.1109/IranianCEE.2012.6292343

  339. Bo-Han Hwang, Yo J.-A., Jiann-Jong Chen, Yuh-Shyan Hwang, Cheng-Chieh Yu: A low-voltage low-noise DC-DC flyback converter with delta-sigma modulation. IEEE Int. Symp on Circuits and Systems (ISCAS), 2012, pp. 2251 – 2254. DOI 10.1109/ISCAS.2012.6271741

  340. G. Moschetti, N. Wadefalk, P.-. Nilsson, M. Abbasi, L. Desplanque, X. Wallart, J. Grahn: Cryogenic InAs/AlSb HEMT Wideband Low-Noise IF Amplifier for Ultra-Low-Power Applications. IEEE Microwave & Wireless Comp. Lett., Vol. 22, no. 3, 2011, pp. 144 – 146. DOI 10.1109/LMWC.2011.2182637

  341. D. Drung, J-H. Storm: Ultralow-noise chopper amplifier with low input charge injection. IEEE Trans on Instr. & Meas., Vol. 60, no. 7, 2011, pp. 2347 – 2352. DOI 10.1109/TIM.2011.2114030

  342. Zhang Heng, Sanchez-Sinencio E.: Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial. IEEE Trans on CAS I: Regular Papers, Vol. 58, no. 1, 2011, pp. 22 – 36. DOI 10.1109/TCSI.2010.2055353

  343. Krüger P.P., Visser B., de Jager O.C.: Theory and Design of Low-Noise Multipath Amplifiers. IEEE Trans on MTT, Vol. 59, no. 2, pp. 414-424, 2011 DOI 10.1109/TMTT.2010.2095878

  344. Garmendia N., Portilla J.: Effect of the Input and Output Impedance on Amplifier Large-Signal Noise Performances. IEEE Trans on MTT, Vol. 59, no. 6, 2011, pp. 1571 – 1578. DOI 10.1109/TMTT.2011.2114673

  345. Galal S., Hui Zheng, Abdelfattah K., Chandrasekhar V., Mehr I., Chen A.J., Platenak J., Matalon N., Brooks T.L.: A 60mW 1.15mA/channel Class-G Stereo Headphone Driver with 111dB DR and 120dB PSRR. IEEE Custom Integrated Circuits Conf (CICC), 2011, pp. 1 – 4. DOI 10.1109/CICC.2011.6055310

  346. Xuezhou Zhu, Zhi Deng, Yulan Li, Yinong Liu, Qian Yue, Jin Li: A cryogenic ultra-low noise CMOS preamplifier for point-contact HPGe detectors. IEEE Nuclear Science Symp. and Medical Imaging Conf (NSS/MIC), 2011, pp. 766 – 769. DOI 10.1109/NSSMIC.2011.6154219

  347. Ferreyro F., Barbieri M., Blandino R., Fossier S., Tualle-Brouri R., Grangier P.: Implementation of a Nondeterministic Optical Noiseless Amplifier. Physical Review Lett., Vol. 104, no. 12, 2010, Article # 123603. DOI 10.1103/PhysRevLett.104.123603

  348. Yang Xuebei, Liu Guanxiong, Balandin A.A., Mohanram Kartik: Triple-Mode Single-Transistor Graphene Amplifier and Its Applications. ACS Nano, Vol. 4, no. 10, 2010, pp. 5532 – 5538. DOI 10.1021/nn1021583

  349. Liero A., Dewitz M., Kuhn S., Chaturvedi N., Jijun Xu, Rudolph M.: On the Recovery Time of Highly Robust Low-Noise Amplifiers. IEEE Trans on MTT, Vol. 58, no. 4, 2010, pp. 781 – 787. DOI 10.1109/TMTT.2010.2041519

  350. Blount P., Trantanell C.J., Coryell L., Lau R.: Low noise, low power dissipation mHEMT-based amplifiers for phased array application. IEEE Int. Symp on Phased Array Systems and Technology (ARRAY), 2010, pp. 233 – 237. DOI 10.1109/ARRAY.2010.5613366

  351. Andrei C., Liero A., Lossy R., Heinrich W., Rudolph M.: Highly linear broadband GaN-based low-noise amplifier. German Microwave Conference (GeMiC), 2010, pp. 36-38 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5498249&isnumber=5498201

  352. Bogris A., Syvridis D., Efstathiou C.: Noise Properties of Degenerate Dual Pump Phase Sensitive Amplifiers. Journal of Lightwave Technology, Vol. 28, no. 8, 2010, pp. 1209 – 1217. DOI 10.1109/JLT.2010.2044016

  353. Richelli A.: CMOS OpAmp Resisting to Large Electromagnetic Interferences. IEEE Trans on EMC, Vol. 52, no 4, 2010, pp 1062 – 1065. DOI 10.1109/TEMC.2010.2055872

  354. Costa G., Giménez N, Arnaud A, Miguez M: SCTF loop for noise reduction in Autozero amplifiers. Electronics Lett., Vol. 46, no 18, 2010, pp 1256 – 1257. DOI 10.1049/el.2010.1456

  355. Noulis T., Kaiserlis N., Siskos S., Sarrabayrouse G.: SiGe BiCMOS CSA-shaper radiation detection front end: Noise performance and noise modelling. 15th IEEE Mediterranean Electrotechnical Conf (MELECON 2010), 2010, pp. 896 – 901. DOI 10.1109/MELCON.2010.5475937

  356. Sbaraini S, Richelli A, Kovacs-Vajna, Zs M: EMI susceptibility in bulk-driven Miller opamp. Electronics Lett., Vol. 46, no 16, 2010, pp 1111 – 1113. DOI 10.1049/el.2010.1029

  357. Crovetti P.S.: Operational amplifier immune to EMI with no baseband performance degradation. Electronics Lett., Vol. 46, no 3, 2010, pp 209 – 210. DOI 10.1049/el.2010.2853

  358. Bombelli L., Fiorini C., Frizzi T., Nava R., Greppi A., Longoni A.: Low-noise CMOS charge preamplifier for X-ray spectroscopy detectors. IEEE Nuclear Science Symp. Conf. Record (NSS), 2010, pp. 135 – 138. DOI 10.1109/NSSMIC.2010.5873732

  359. Giusi G., Crupi F., Pace C., Magnone P.: Full Model and Characterization of Noise in Operational Amplifier. IEEE Trans on CAS I: Regular Papers, vol. 56, no. 1, 2009, pp. 97 – 102. DOI 10.1109/TCSI.2008.927011

  360. Giusi G., Crupi F., Pace C.: Ultrasensitive low noise voltage amplifier for spectral analysis. Review of Scientific Instruments, Vol. 79, no. 8, 2009, pp. 084701. DOI 10.1063/1.2967339

  361. Malo-Gomez I., Gallego-Puyol J.D., Diez-Gonzalez C., Lopez-Fernandez I., Briso-Rodriguez C.: Cryogenic Hybrid Coupler for Ultra-Low-Noise Radio Astronomy Balanced Amplifiers. IEEE Trans on MTT, Vol. 57, no. 12, 2009, pp. 3239 – 3245. DOI 10.1109/TMTT.2009.2033874

  362. Rudolph M., Chaturvedi N., Hirche K., Wurfl J., Heinrich W., Trankle G.: Highly Rugged 30 GHz GaN Low-Noise Amplifiers. IEEE Microwave & Wireless Comp. Lett., Vol. 19, no. 4, 2009, pp. 251 – 253. DOI 10.1109/LMWC.2009.2015514

  363. Radic J.B., Djugova A.M., Videnovic-Misic M.S.: Linearity issue in 2.4 GHz 0.35μm BiCMOS low noise amplifier. Int.Conf on Telecom. in Modern Satellite, Cable, and Broadcasting Services (TELSIKS), 2009, pp. 32 – 35. DOI 10.1109/TELSKS.2009.5339498

  364. Hu Zhiyong, Quan Haiyang, Zhang Fuqiang, Wang Peisheng: Ultra-Low Noise Charge Sensitive Amplifier for MEMS Gyroscope. Int. Conf. on MEMS, NANO, and Smart Systems (ICMENS), 2009, pp. 29 – 32. DOI 10.1109/ICMENS.2009.20

  365. Khalil I., Rudolph M., Liero A., Neumann M., Heinrich W.: High Power, High Linearity and Low-Noise Hybrid RF Amplifiers Based on GaN HEMTs. German Microwave Conference (GeMiC), 2009, pp. 1 – 4. DOI 10.1109/GEMIC.2009.4815890

  366. Dimitropoulos D., Solli D.R., Claps R., Boyraz O., Jalali B.: Noise Figure of Silicon Raman Amplifiers. Journal of Lightwave Technology, Vol. 26, no. 7, 2008, pp. 847 – 852. DOI 10.1109/JLT.2007.915211

  367. Levinzon F. A.: Ultra-Low-Noise High-Input Impedance Amplifier for Low-Frequency Measurement Applications. IEEE Trans on CAS I : Regular Papers, Vol. 55, no. 7, 2008, pp. 1815 – 1822. DOI 10.1109/TCSI.2008.918213

  368. Felinskyi G.: Amplified spontaneous emission measurements and noise figure of the distributed fiber Raman amplifiers with terahertz bandwidth. 4th Int.Conf on Advanced Optoelectronics and Lasers (CAOL), 2008, pp. 140 – 142. DOI 10.1109/CAOL.2008.4671879

  369. Kopa A., Apsel A.B.: Distributed Amplifier With Blue Noise Active Termination. IEEE Microwave and Wireless Components Letters, Vol. 18, no 3, 2008, pp 203 – 205. DOI 10.1109/LMWC.2008.916814

  370. Pullia A., Zocca F., Riboldi S., Budjas D., D'Andragora A., Cattadori C.: A cryogenic low-noise JFET-CMOS preamplifier for the HPGe detectors of GERDA. IEEE Nuclear Science Symp. Conf. Record (NSS), 2008, pp. 2056 – 2060. DOI 10.1109/NSSMIC.2008.4774881

  371. Miller D. A., Poocharoen P., Forbes L.: 1/f Noise and RTS (Random Telegraph Signal) Errors in Sense Amplifiers. IEEE Workshop on Microelectronics and Electron Devices (WMED 2007), 2007, pp. 21 – 22. DOI 10.1109/WMED.2007.368839

  372. Walravens C., Van Winckel S., Redoute J.M., Steyaert M.: Efficient reduction of electromagnetic interference effects in operational amplifiers. Electronics Lett., Vol. 43, no 2, 2007, pp 84 – 85. DOI 10.1049/el:20073026

  373. Rudolph M., Behtash R., Doerner R., Hirche K., Wurfl J., Heinrich W., Trankle G.: Analysis of the Survivability of GaN Low-Noise Amplifiers. IEEE Trans on MTT, Vol. 55, no. 1, 2007, pp. 37 – 43. DOI 10.1109/TMTT.2006.886907

  374. Redoute J.-M., Steyaert M.: Measurement of EMI induced input offset voltage of an operational amplifier. Electronics Lett., Vol. 43, no 20, 2007, pp 1088 – 1090. DOI 10.1049/el:20071017

  375. Agnes A., Cabrini A., Maloberti F., Martini G.: Cancellation of Amplifier Offset and 1/f Noise: An Improved Chopper Stabilized Technique. IEEE Trans on CAS II : Express Briefs, Vol. 54, no. 6, 2007, pp. 469 – 473. DOI 10.1109/TCSII.2007.891758

  376. Crupi F., Giusi G., Pace C.: Two-channel amplifier for high-sensitivity voltage noise measurements. IEEE Int. Instrumentation & Measurement Technology Conf (I2MTC), 2007, pp. 1 – 4. DOI 10.1109/IMTC.2007.379126

  377. Garmendia N., Portilla J.: Study of PM Noise and Noise Figure in Low Noise Amplifiers Working under Small and Large Signal Conditions. IEEE MTT-S Int. Microwave Symp Digest (MTT), pp. 2095-2098, 2007 DOI 10.1109/MWSYM.2007.380300

  378. Pullia A., Zocca F., Oberlack U., Olsen C., Shagin P.: A cold low noise preamplifier for use in liquid Xenon. IEEE Nuclear Science Symp. Conf. Record (NSS), Vol. 1, 2007, pp. 424 – 428. DOI 10.1109/NSSMIC.2007.4436362

  379. Gans M.J.: Channel Capacity Between Antenna Arrays— Part I: Sky Noise Dominates. IEEE Trans on Communications, Vol. 54, no. 9, 2006, pp. 1586 – 1592. DOI 10.1109/TCOMM.2006.881238

  380. Gans M.J.: Channel Capacity Between Antenna Arrays— Part II: Amplifier Noise Dominates. IEEE Trans on Communications, Vol. 54, no. 11, 2006, pp. 1983 – 1992. DOI 10.1109/TCOMM.2006.881366

  381. Randa J., Gerecht E., Dazhen Gu, Billinger R.L.: Precision measurement method for cryogenic amplifier noise temperatures below 5 K. IEEE Trans on MTT, Vol. 54, no. 3, 2006, pp. 1180 – 1189. DOI 10.1109/TMTT.2005.864107

  382. Ciofi C., Crupi F., Pace C., Scandurra G.: How to enlarge the bandwidth without increasing the noise in OP-AMP-based transimpedance amplifier. IEEE Trans on Instr. & Meas., Vol. 55, no. 3, 2006, pp. 814 – 819. DOI 10.1109/TIM.2006.873782

  383. Lee H., Mohammadi S.: A 3 GHz subthreshold CMOS low noise amplifier. IEEE Radio Frequency Integrated Circuits Symp. (RFIC), 2006, pp. 4 DOI 10.1109/RFIC.2006.1651199

  384. Rudolph M., Behtash R., Hirche K., Wurfl J., Heinrich W., Trankle G.: A Highly Survivable 3-7 GHz GaN Low-Noise Amplifier. IEEE MTT-S Int. Microwave Symp Digest (MTT), 2006, pp. 1899 – 1902. DOI 10.1109/MWSYM.2006.249786

  385. Tao Yin, Haigang Yang, Quan Yuan, Guoping Cui: Noise Analysis and Simulation of Chopper Amplifier. IEEE Asia Pacific Conf. on Circuits and Systems (APCCAS), pp. 167-170, 2006 DOI 10.1109/APCCAS.2006.342339

  386. Lopez-Fernandez I., Puyol J.D.G., Gonzalez C.D., Cancio A.B.: Development of Cryogenic IF Low-Noise 4-12 GHz Amplifiers for ALMA Radio Astronomy Receivers. IEEE MTT-S Int. Microwave Symp Digest (MTT), 2006, pp. 1907 – 1910. DOI 10.1109/MWSYM.2006.249788

  387. Fiori F.L., Crovetti P.S.: Prediction of high-power EMI effects in CMOS operational amplifiers. IEEE Trans on EMC, Vol. 48, no 1, 2006, pp 153 – 160. DOI 10.1109/TEMC.2006.870690

  388. Zadeh A.R., Nikmehr S.: Noise Considerations in Cascaded Single-Stage Distributed Amplifiers. Int. Conf. on Electrical and Computer Engineering (ICECE '06), 2006, pp. 92 – 95. DOI 10.1109/ICECE.2006.355298

  389. Mozjerin I., Hardy A.A., Ruschin S.: Effect of chip area limitation on gain and noise of erbium-doped waveguide amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, no. 1, 2005, pp. 204 – 210. DOI 10.1109/JSTQE.2004.841695

  390. Aparin V., Larson L.E.: Modified derivative superposition method for linearizing FET low-noise amplifiers. IEEE Trans on MTT, Vol. 53, no. 2, 2005, pp. 571 – 581. DOI 10.1109/TMTT.2004.840635

  391. Mingxu Liu, Craninckx J., Iyer N.M., Kuijk M., Barel A.: A 6.5-kV ESD protected 3-5-GHz ultra-wideband BiCMOS low noise amplifier using interstage gain roll-off compensation. IEEE Int. Conf on Ultra-Wideband (ICU), 2005, pp. 525 – 529. DOI 10.1109/ICU.2005.1570043

  392. Kalantari F., Masoumi N., Saeidi R.: A 5.25-GHz Low Noise Amplifier for WMAN Applications in a 0.18-μm CMOS Technology. Int. Conf on Microelectronics (ICM), 2005, pp. 122 – 127. DOI 10.1109/ICM.2005.1590051

  393. Jeonghoon Lee, Youngsik Kim: CMOS low noise amplifier design techniques using shunt resistive feedback. Proc. Asia-Pacific Microwave Conf. (APMC), Vol. 3, 2005, pp. 4 DOI 10.1109/APMC.2005.1606587

  394. Won Ko, Youngwoo Kwon: Improved noise analysis of distributed preamplifier with cascode FET cells. IEEE Trans on MTT, Vol. 53, no. 1, 2005, pp 361 – 371. DOI 10.1109/TMTT.2004.839937

  395. Richelli A., Colalongo L., Quarantelli M., Kovacs-Vajna Z.M.: Robust design of low EMI susceptibility CMOS OpAmp. IEEE Trans on EMC, Vol. 46, no 2, 2004, pp 291 – 298. DOI 10.1109/TEMC.2004.826874

  396. Vandersmissen R., Schreurs D., Dambrine G., Carchon G., Borghs G.: Noise and large-signal characterization of a thin-film MHEMT feedback amplifier in multilayer MCM-D technology. Proc. of the 2004 Int. Conf. on Compound Semiconductor Manufacturing Technology, GaAs MANTecH 2004, Miami, FL, USA, 2004, 8.14, 4p. http://www.gaasmantech.org/Digests/2004/2004Papers/8.14.pdf

  397. Ismail A., Abidi A.A.: A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network. IEEE Journal of SSC, Vol. 39, no. 12, 2004, pp. 2269 – 2277. DOI 10.1109/JSSC.2004.836344

  398. N. Wadefalk, A. Mellberg, I. Angelov, M.E. Barsky, S. Bui, E. Choumas, R.W. Grundbacher, E.L. Kollberg, R. Lai, N. Rorsman, P. Starski, J. Stenarson, D.C. Streit, H. Zirath: Cryogenic wide-band ultra-low-noise IF amplifiers operating at ultra-low DC power. IEEE Trans on MTT, Vol. 51, no. 6, 2003, pp. 1705 – 1711. DOI 10.1109/TMTT.2003.812570

  399. Howe D.A., Ostrick J.R.: 100-GHz cooled amplifier residual PM and AM noise measurements, noise figure, and jitter calculations. IEEE Trans on MTT, Vol. 51, no. 11, 2003, pp. 2235 – 2242. DOI 10.1109/TMTT.2003.818934

  400. Howe D.A., Ostrick J.R.: Residual PM and AM noise measurements, noise figure and jitter calculations of 100 GHz amplifiers. Proc. of IEEE Int. Frequency Control Symp. and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003, pp. 503 – 515. DOI 10.1109/FREQ.2003.1275143

  401. Abuelma'atti M.T.: Analysis of the effect of radio frequency interference on the DC performance of bipolar operational amplifiers. IEEE Trans on EMC, Vol. 45, no 2, 2003, pp 453 – 458. DOI 10.1109/TEMC.2003.811312

  402. Yamamoto Y., Inoue K.: Noise in amplifiers. Journal of Lightwave Technology, Vol. 21, no. 11, 2003, pp 2895 – 2915. DOI 10.1109/JLT.2003.816887

  403. Fiori F.: A new nonlinear model of EMI-induced distortion phenomena in feedback CMOS operational amplifiers. IEEE Trans on EMC, Vol. 44, no 4, 2002, pp 495 – 502. DOI 10.1109/TEMC.2002.804766

  404. Hashemi H., Hajimiri A.: Concurrent multiband low-noise amplifiers-theory, design, and applications. IEEE Trans on MTT, Vol. 50, no. 1, 2002, pp. 288 – 301. DOI 10.1109/22.981282

  405. Ha S.J., Lee Y.D., Kim Y.H., Choi J.J., Hong U.S.: Dielectric resonator oscillator with balanced low noise amplifier. Electronics Lett., Vol. 38, no. 24, 2002, pp. 1542 – 1544. DOI 10.1049/el:20020993

  406. Meissner M., Rosch M., Korolkova N., Sizmann A., Schmauss B., Leuchs G.: Optimum splitting ratio for amplifier noise reduction by an asymmetric nonlinear optical loop mirror. European Conf on Optical Communication (ECOC), Vol. 3, 2002, pp. 1 – 2. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1601229&isnumber=33653

  407. Fiori F.: Operational amplifier input stage robust to EMI. Electronics Lett., Vol. 37, no 15, 2001, pp 930 – 931. DOI 10.1049/el:20010651

  408. Balamurgan G., Shambhag N.R.: The Twin-Transistor Noise-Tolerant Dynamic Circuit Technique. IEEE JSSC, vol. 36,no. 2, Feb. 2001, pp 273 – 280. DOI 10.1109/4.902768

  409. Pichler B.J., Pimpl W., Buttler W., Kotoulas L., Boning G., Rafecas M., Lorenz E., Ziegler S.I.: Integrated low-noise low-power fast charge-sensitive preamplifier for avalanche photodiodes in JFET-CMOS technology. IEEE Trans on Nuclear Science, Vol. 48, no. 6, 2001, pp. 2370 – 2374. DOI 10.1109/23.983270

  410. Oh E. S., Sharp E. H., Fixsen D. J., Cheng E. S., Inman C. A., Silver C.: A low noise cryogenic preamplifier for the cosmic microwave background radiation anisotropy experiment. Review of Scientific Instruments, Vol. 72, no. 6, 2001, pp. 2735 – 2737. DOI 10.1063/1.1372167

  411. Imajuku W., Takada A., Yamabayashi Y.: Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit. Electronics Lett., Vol. 36, no 1, 6 Jan. 2000, pp 63 – 64. DOI 10.1049/el:20000032

  412. Strutz S.J., Williams K.J.: Low-noise hybrid erbium/Brillouin amplifier. Electronics Lett., Vol. 36, no 16, 3 Aug. 2000, pp 1359 – 1360. DOI 10.1049/el:20001016

  413. Levinzon F. A.: Noise of the JFET amplifier. IEEE Trans on CAS I : Fundamental Theory and Applications, Vol. 47, no. 7, 2000, pp. 981 – 985. DOI 10.1109/81.855453

  414. Jiansheng Xu, Yisong Dai, Abbott D.: A complete operational amplifier noise model: analysis and measurement of correlation coefficient. IEEE Trans on CAS I : Regular Papers, Vol. 47, no. 3, 2000, pp. 420 – 424. DOI 10.1109/81.841928

  415. Kobayashi K.W., Fernandez J.E., Kobayashi J.H., Leung M., Oki A.K., Tran L.T., Lammert M., Block T.R., Streit D.C.: A DC-3 GHz cryogenic AlGaAs/GaAs HBT low noise MMIC amplifier with 0.15 dB noise figure. IEEE Int. Electron Devices Meeting (IEDM), 1999, pp. 775 – 778. DOI 10.1109/IEDM.1999.824265

  416. Abidi A.A., Leete J.C.: De-Embedding the Noise Figure of Differential Amplifiers. IEEE JSSC, vol. 34, no. 6, June 1999, pp 882 – 885. DOI 10.1109/4.766823

  417. Boglione L., Pollard R., Postoyalko V.: Rn Circles for Series-Feedback Amplifiers. IEEE Trans. on MTT, vol. 47, no. 7, July 1999, pp 973 – 978. DOI 10.1109/22.775428

  418. Hakkinen J., Rahkonen T., Kostamovaara J.: An integrated programmable low-noise charge pump. Proc of 6th IEEE Int. Conf on Electronics, Circuits and Systems (ICECS '99), vol. 1, 1999, pp. 185 – 188. DOI 10.1109/ICECS.1999.812254

  419. Xu J., Dai Y., Yaqen Li: The Study of the Relation Between Rn – Gn Noise Model and En – In Noise Model of an Amplifier. IEEE Trans. on CAS I, vol. 45, no. 2, Febr. 1998, pp 154 – 156. DOI 10.1109/81.661680

  420. Kerr A. R.: On the Noise Properties of Balanced Amplifiers. IEEE Microwave and Guided Wave Letters, vol. 4, no. 11, Nov. 1998, pp 390 – 392. DOI 10.1109/75.736255

  421. Blank A., Kastner R., Levanon H.: Exploring new active materials for low-noise room-temperature microwave amplifiers and other devices. IEEE Trans on MTT, vol. 46, no. 12, pp. 2137-2144, Dec 1998 DOI 10.1109/22.739295

  422. Walls F. L., Ferre-Pikal E. S., Jefferts S. R.: Origin of 1/f PM and AM Noise in Bipolar Junction Transistor Amplifiers. IEEE Trans on Ultrasonics, Ferroelectrics and Freq. Control, Vol. 44, no 2, March 1997, pp 326 – 334. DOI 10.1109/58.585117

  423. Shaeffer D. K., Lee T. H.: A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier. IEEE Journal of Solid State Circ., vol. 32, no. 5 May 1997, pp 745 – 759. DOI 10.1109/4.568846

  424. Daw E., Bradley R. F.: Effect of high magnetic fields on the noise temperature of a heterostructure field-effect transistor low-noise amplifier. Journal of Applied Physics, Vol. 82, no. 4, 1997, pp. 1925 – 1929. DOI 10.1063/1.366000

  425. Wait D.F., Randa J.: Amplifier noise measurements at NIST. IEEE Trans on Instr. & Meas., Vol. 46, no. 2, 1997, pp. 482 – 485. DOI 10.1109/19.571891

  426. Donati S., Giuliani G.: Noise in an optical amplifier: formulation of a new semiclassical model. IEEE Journal of Quantum Electronics, Vol. 33, no. 9, 1997, pp. 1481 – 1488. DOI 10.1109/3.622626

  427. Bertuccio G., Fasoli L., Sampietro M.: Design criteria of low-power low-noise charge amplifiers in VLSI bipolar technology. IEEE Trans on Nuclear Science, Vol. 44, no. 5, 1997, pp. 1708 – 1718. DOI 10.1109/23.633423

  428. Novakov E.: Evaluation of the electrode-amplifier noise in high resolution biological signal acquisition. Proc. Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Vol. 4, 1997, pp. 1452 – 1454. DOI 10.1109/IEMBS.1997.756979

  429. I.G. Finvers, J.W. Haslett, F.N. Trofimenkoff: Noise Analysis of a Continuous-Time Auto-Zeroed Operational Amplifier. IEEE Trans. on CAS, Part II, Vol. 43, no. 12, 1996, pp. 791 – 800. DOI 10.1109/82.553395

  430. Shtaif M., Eisenstein G.: Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit. IEEE Journal of Quantum Electronics, Vol. 32, no. 10, 1996, pp. 1801 – 1809. DOI 10.1109/3.538787

  431. Tarasov M., Ivanov Z.: Optimization of input impedance and mechanism of noise suppression in a DC SQUID RF amplifier. IEEE Trans on Applied Superconductivity, Vol. 6, no. 2, 1996, pp. 81 – 86. DOI 10.1109/77.506687

  432. Blake K.: Noise Design of Current-Feedback Op Amp Circuits. Applic. Note OA-12, Rev. B, National Semicond., April 1996.

  433. M. Steffes: Noise Analysis for High Speed Op Amps. Burr-Brown, 1996, AB-103.

  434. Jacobs I.: Dependence of optical amplifier noise figure on relative-intensity-noise. Journal of Lightwave Technology, Vol. 13, no. 7, 1995, pp. 1461 – 1465. DOI 10.1109/50.400712

  435. Kobayashi K.W., Oki A.K.: A DC-10 GHz high gain-low noise GaAs HBT direct-coupled amplifier. IEEE Microwave and Guided Wave Letters, Vol. 5, no. 9, 1995, pp. 308 – 310. DOI 10.1109/75.410407

  436. Jung T.S., Guckel H., Seefeldt J., Ott G., Ahn Y. C.: A fully integrated, monolithic, cryogenic charge sensitive preamplifier using N-channel JFETs and polysilicon resistors. IEEE Trans on Nuclear Science, Vol. 41, no. 4, 1994, pp. 1240 – 1245. DOI 10.1109/23.322892

  437. Grosch T. O., Carpenter L.A.: Two-Port to Three-Port Noise Wave Transformation for CAD Applications. IEEE Trans. on MTT, vol. 41, no. 9, Sept. 1993, pp 1543 – 1548. DOI 10.1109/22.245675

  438. Wurtz L.T., Wheless W.P., Jr.: Design of a low-noise, radiation-hardened charge preamplifier. Proc. of IEEE Southeastcon (SECON), 1993, pp. 6 DOI 10.1109/SECON.1993.465735

  439. Baker B. C.: Noise Sources in Applications Using Capacitive Coupled Isolated Amplifiers. Burr-Brown, 1993, Application Bulletin AB-047.

  440. Jacobsen G.: Multichannel system design using optical preamplifiers and accounting for the effects of phase noise, amplifier noise, and receiver noise. Journal of Lightwave Technology, Vol. 10, no. 3, 1992, pp. 367 – 377. DOI 10.1109/50.124500

  441. Jorgensen B.F., Mikkelsen B., Mahon C.J.: Analysis of optical amplifier noise in coherent optical communication systems with optical image rejection receivers. Journal of Lightwave Technology, Vol. 10, no. 5, 1992, pp. 660 – 671. DOI 10.1109/50.136102

  442. Wait D. F.: Measurement Accuracies for Various Techniques for Measuring Amplifier Noise. ARFTG Conf. Digest-Spring, Vol. 21, 1992, pp. 43 – 52. DOI 10.1109/ARFTG.1992.326971

  443. Baker B. C.: Improved Device Noise Performance for the 3650 Isolation Amplifier. Burr-Brown, 1992, Appl. Bulletin AB-044.

  444. Agouridis D.C.: Comments on 'Noise Performance of Operational Amplifier Circuits'. IEEE Trans. on Educ., Vol. 35 no. 1, Feb. 1992, pp 98. DOI 10.1109/13.123425

  445. Hagen J. B.: Noise Parameter Transformation for Three Terminal Amplifiers. IEEE Trans. on MTT, vol. 38, no. 3, March 1990, pp 319 – 321. DOI 10.1109/22.45351

  446. Aho J., Halonen K.: Noise optimization of BiCMOS operational amplifiers. IEEE Int. Symp on Circuits and Systems (ISCAS), Vol. 4, 1990, pp. 3201 – 3204. DOI 10.1109/ISCAS.1990.112693

  447. Walker G.R., Steele R.C., Walker N.G.: Optical amplifier noise figure in a coherent optical transmission system. Journal of Lightwave Technology, Vol. 8, no. 9, 1990, pp. 1409 – 1413. DOI 10.1109/50.59172

  448. Trofimenkoff F.N., Onwuachi O. A.: Noise Performance of Operational Amplifier Circuits. IEEE Trans. on Education, vol. E-32, Feb. 1989, pp 12 – 16. DOI 10.1109/13.21156

  449. Niclas K.B., Chang A.P.: Noise in two-tier matrix amplifiers. IEEE Trans on MTT, vol. 36, no. 1, 1988, pp. 11 – 20. DOI 10.1109/22.3476

  450. A. Rich: Noise Calculation in Op Amp Circuits. Linear Technology, Design Notes, 15, September 1988.

  451. Ward H.R.: A Method for Measuring Pulsed Amplifier Noise Using a Spectrum Analyzer. IEEE Trans on EMC, Vol. EMC-27, no. 2, 1985, pp. 99 – 100. DOI 10.1109/TEMC.1985.304262

  452. Loudon R.: Theory of noise accumulation in linear optical-amplifier chains. IEEE Journal of Quantum Electronics, Vol. 21, no. 7 1985, pp. 766 – 773. DOI 10.1109/JQE.1985.1072735

  453. Smith S. W.: Internal noise of low‐frequency preamplifiers. Review of Scientific Instruments, Vol. 55, no. 5, 1984, pp. 812 – 813. DOI 10.1063/1.1137833

  454. Niclas K. B., Tucker B. A.: On Noise in Distributed Amplifiers at Microwave Frequencies. IEEE Trans. on MTT, vol. MTT-31, no. 8, Aug. 1983, pp 661 – 668. DOI 10.1109/TMTT.1983.1131565

  455. Kuzmin L., Likharev K., Migulin V., Zorin A.: Quantum noise in Josephson-junction parametric amplifiers. IEEE Trans on Magnetics, 1983, Vol. 19, no. 3, pp. 618 – 621. DOI 10.1109/TMAG.1983.1062472

  456. Niclas K. B.: Noise in Broad-Band GaAs MESFET Amplifiers with Parallel Feedback. IEEE Trans. on MTT, vol. MTT-30, no. 1, Jan. 1982, pp 63 – 70. DOI 10.1109/TMTT.1982.1131018

  457. El-Diwany M. H., Roulston D. J., Chamberlain S.G.: Design of Low-Noise Bipolar Transimpedance Preamplifiers for Optical Receivers. IEE Proceedings G: Electronic Circuits & Syst. vol. 128, no. 6, Dec. 1981, pp 299 – 305. DOI 10.1049/ip-g-1:19810069

  458. Moustakas S., Hullett J. L.: Noise Modelling for Broadband Amplifier Design. IEE Proc. G: Electronic Circuits & Systems, no. 2, April 1981, pp 67 – 76. DOI 10.1049/ip-g-1:19810014

  459. Shinriki M., Kishimoto A., Sasase I., Mori S.: Signal-to-Noise Ratio of the nth Law Amplifier for Non-Gaussian Noise. IEEE Trans on Communications, Vol. 28, no. 9, 1980, pp. 1747 – 1753. DOI 10.1109/TCOM.1980.1094841

  460. Weinreb S.: Low-Noise Cooled GASFET Amplifiers. IEEE Trans on MTT, Vol. 28, no. 10, 1980, pp. 1041 – 1054. DOI 10.1109/TMTT.1980.1130223

  461. Roberts J.A., Tsui E.T., Watson D.C.: Signal-to-noise ratio evaluations for nonlinear amplifiers. IEEE Trans. Commun., 1979, COM-27, pp. 197 – 201. DOI 10.1109/TCOM.1979.1094260

  462. J.W. Haslett, A. Krausas: Noise Reduction in Integrated Norton Amplifiers. Proc. IEE (London), Vol. 124, no. 12, 1977, pp. 1121 – 1124. DOI 10.1049/piee.1977.0235

  463. Haslett J.W.: Noise Performance Limitations of Single Amplifier RC Active Filters. IEEE Trans. on CAS, 1975, pp. 743 - 747. DOI 10.1109/TCS.1975.1084117

  464. Haslett J. W.: Noise Performance of the New Norton Op Amps. IEEE Trans on Electron Devices, vol. ED-21, no. 9, Sept. 1974, pp 571 – 577. DOI 10.1109/T-ED.1974.17968

  465. Sherwin J.: Noise Specs Confusing ?. National Semiconductor, Applic. Note 104, May 1974.

  466. Elad E.: Drain Feedback - A Novel Feedback Technique for Low-Noise Cryogenic Preamplifiers. IEEE Trans on Nuclear Science, Vol. 19, no. 1, 1972, pp. 403 – 411. DOI 10.1109/TNS.1972.4326541

  467. Letzter S., Webster N.: Noise in Amplifiers. IEEE Spectrum, vol. 7, Aug. 1970, pp 67 – 75. DOI 10.1109/MSPEC.1970.5213514

  468. Engen G. F.: A New Method of Characterizing Amplifier Noise Performance. IEEE Trans on Instr. & Meas., Vol. 19, no. 4, 1970, pp. 344 – 349. DOI 10.1109/TIM.1970.4313925

  469. Kern H. E., McKenzie J. M.: Methods of Reducing Noise of Junction Field Effect Transistor (JFET) Amplifiers. IEEE Trans on Nuclear Science, Vol. 17, no. 1, 1970, pp. 260 – 268. DOI 10.1109/TNS.1970.4325587

  470. Wadhwa R.P., Misra V.K., Sidhu G.S.: Studies of crossed field amplifiers relating to stability, noise and electron guns. 1968 Int. Electron Devices Meeting , vol. 14, pp. 28, 1968 DOI 10.1109/IEDM.1968.187957

  471. Blankenship J. L.: Design of Low-Noise Vacuum-Tube Pulse Amplifiers for Semiconductor Radiation-Detector Spectroscopy. IEEE Trans on Nuclear Science, Vol. 11, no. 3, 1964, pp. 373 – 381. DOI 10.1109/TNS.1964.4323450

  472. Heffner H.: The Fundamental Noise Limit of Linear Amplifiers. Proc of IRE, July 1962, pp 1604 – 1608. DOI 10.1109/JRPROC.1962.288130

  473. Hearn R., Bennett R.J., Wind B.A.: Some types of low noise amplifier. Journal of the British Institution of Radio Engineers, Vol. 22, no. 5, 1961, pp. 393 – 403. DOI 10.1049/jbire.1961.0133

  474. B. Carter: Op Amp Noise Theory and Applications. In: Op Amps for Everyone, Texas Instruments, Literature Number: SLOD006A, Chapter 10, pp 10-1 – 10-23.

Copyright 2010 © UNESCO - All Rights Reserved.